Aptitude - Simple Interest Online Quiz


Advertisements


Following quiz provides Multiple Choice Questions (MCQs) related to Simple Interest. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz.

Questions and Answers

Q 1 - Rs 6000 get to be Rs 7200 in 4 years at a sure rate of interest. On the off chance that the rate gets to be 1.5 times of itself, the measure of the same central in 5 years will be:

A - Rs 8000

B - Rs 8250

C - Rs 9000

D - Rs 9250

Answer : B

Explanation

S.I on Rs 6000 for 4 years= (7200-6000) = 1200 Rs.
∴ Rate = (100*1200/6000*4) % p.a. = 5% p.a
New rate = (5*3/2) % = 15/2% P.a.
Required amount = [6000+ (6000*5/100*15/2)]
 = Rs. (6000+2250) = Rs. 8250.

Q 2 - On the off chance that the basic simple interest for a long time be equivalent to 30% of the principal, it will be equivalent to the vital after.

A - 10 years

B - 20 years

C - 22 years

D - 30 years

Answer : B

Explanation

Let the principle be Rs.x and the rate be R% p.a.  Then,
X*R/100*6 = 30/100*x = R= 5
Let the required time be t years.
X*5/100*t = x => t =100/5 = 20 years.

Q 3 - Simple interest on a sure whole at a sure yearly rate of interest is 25/16 of the entirety. In the event that the number speaking to rate percent and time in years is equivalent, then rate percent per annum is:

A - 8%

B - 23/2%

C - 49/4%

D - 25/2%

Answer : D

Explanation

Let the sum be Rs. x, Rate = R% P.a., time = 25/2 years.
S.I = Rs. 25x/16  R = 100*25x/16 *1/x* 1/R => R2=2500/16 = R= 25/2
Hence, Rate = 25/2%

Q 4 - An acquires Rs 8000 at 12% p.a simple interest and B gets Rs 9100 at 10%p.a. simple interest . In how long will their measures of obligations be equivalent?

A - 18 years

B - 20 years

C - 22 years

D - 24 years

Answer : C

Explanation

Let the required time be x years. Then,
8000+8000*12/100*x= 9100+9100*10/100*x
=> 50x =1100 => x= 22 years

Q 5 - A sum of money doubles itself in 20 years. What is the rate of interest?

A - 10%

B - 5%

C - 15%

D - Cannot be determined

Answer : B

Explanation

Here, I = P. Given T = 20 years. R = ?

We know,
I = PTR/100
Or, R = I*100/PT
= P*100/P*20
= 5%

Q 6 - A person invests a certain sum at a certain rate of simple interest for 5 years. Had he invested it at 2% higher, he would have earned Rs 250 more. Find the sum he invested.

A - 2500

B - 2000

C - 4000

D - None of these

Answer : A

Explanation

Rs 250 is the additional interest in 5 years that he would have earned if he had invested it at 2% higher rate of interest.

Hence we can consider, I = Rs 250, R = 2% and t = 5 years.

P = I*100/Rt = (250*100)/2*5
= Rs 2500

Q 7 - Simple interest on a certain amounts is 916 of the principal. If the numbers representing the rate of interest in percent and time in years be equal, then time, for which the principal is lent out, is?

A - 7%

B - 512%

C - 712%

D - 812%

Answer : C

Explanation

Let sum be z. Then,S.I = 9z16
Let rate = R% and Time = R years
therefore z x R x R100 R2
90016
R = 304 = 712 years.

Q 8 - An amount of Rs. 1,00,000 is invested in two types of shares. The first yields an interest of 9% p.a. and the second, 11% p.a. If the total interest at the end of one year is 934, then the amount invested in each share was?

A - Rs. 62500,Rs. 37500

B - Rs. 62500,Rs. 37000

C - Rs. 62050,Rs. 30500

D - Rs. 62550,Rs. 37550

Answer : A

Explanation

Let the sum invested at 9% be Rs. z and that invested at 11% be Rs. ( 100000 - z ). Then,
z x 9 x 1100 + (100000 - z) x 11 x 1100
= 100000 x 394 x 1100
= 9z + 1100000 - 11z100 
390004 = 9750 2z = (1100000 - 975000) = 125000 x = 62500 sum invested at 9% = Rs. 62500 sum invested at 11% = Rs. (100000 - 62500) = 37500

Q 9 - Divide Rs. 2379 into 3 parts so that their amounts after 2,3 and 4 years respectively may be equal, the rate of interest being 5% per annum at simple interest. The first part is?

A - 759

B - 792

C - 818

D - 828

Answer : A

Explanation

Let the parts be a,b and [2379 - (a + b)]
a + (a x 25100) = b + (b x 35100) = c + (c x 45100)
= 11a10 = 23b20 = 6c5 = k
a = 10k11 
b = 20k23
c = 5k6 But, a + b + c = 2379 10k11 + 20k23 + 5k6 = 2379 1380k + 1320k + 1265k = 2379 x 11 x 23 x 6 k = 2379 x 11 x 23 x 63965 = 3 x 11 x 23 x 65 a = 828


aptitude_simple_interest.htm

Advertisements
E-Books Store