
- Aptitude Test Preparation
- Aptitude - Home
- Aptitude - Overview
- Quantitative Aptitude
- Aptitude Useful Resources
- Aptitude - Questions & Answers
Basic Equations - Online Quiz
Following quiz provides Multiple Choice Questions (MCQs) related to Basic Equations. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz.

Answer : B
Explanation
The given equations are 2x+ y=8... (1) 4x-3y=-4 ...(2) On multiplying (1) by 3 and adding (2) to it, we get: 10x= 20 ⇒x= 2 Putting x= 2 in (1), we get: 4+ y = 8 ⇒y = 4 ∴ x= 2, y= 4
Q 2 - On solving 4/x+5y=7 and 3/x+4y =5 we, get:
Answer : C
Explanation
Given equations are 4/x+5 y= 7 ...(i) 3/x+4y = 5 ...(ii) On multiplying (i) by 3, (ii) by 4 and subtracting, we get -y =1 ⇒y= -1 Putting y= -1 in (i), we get 4/x-5 = 7 ⇒4/x= 12 ⇒12x= 4 ⇒x= 1/3 ∴x= 1/3, y= -1
Answer : D
Explanation
Given 3x+7y = 75 ...(i) 5x-5 y= 25 ⇒x-y = 5...(ii) Multiplying (ii) by 7 and adding to (i), we get: 10 x = 110 ⇒x = 11 Putting x = 11 in (ii), we get: y=(11-5) = 6 ∴ x+y = (11+6) = 17
Q 4 - If x/4 + y/3= 5/12 and x/2+ y =1, then the estimation of (x+y) is:
Answer : C
Explanation
Given equations are 3x+4y= 5 ...(i) and x+2y =2 ...(ii) On multiplying (ii) by 3 and subtracting (i) from it, we get 2y = 1 ⇒y = 1/2 Putting y = 1/2 in (ii), we get x+2*1/2 = 2 ⇒x+1= 2 ⇒x =1 ∴(x+y ) = (1+1/2 ) = 3/2
Q 5 - On the off chance that 2a+3 b= 17 and 2a+2-3b+1= 5 then:
Answer : D
Explanation
Given equation are 2a +3b = 17 ...(i) 2a*22- 3b*3ⁱ= 5 ⇒4*2a- 3*3b= 5 ...(ii) Putting 2a = x and 3b= y, we get: x+y= 17 ...(iii) 4x-3y = 5...(iv) Multiplying (iii) by 3 and adding (iv) to it, we get: 7x= 56 ⇒x= 8 Putting x= 8 in (iii), we get: 8+ y = 17 ⇒y = 9 ∴ (2a= 8 = 23 ⇒a = 3) and (3b= 9= 32 ⇒b= 2) ∴ a= 3, b= 2
Q 6 - On the off chance that 4x+6y =32 and 4x-2y= 4, then 8y =?
Answer : D
Explanation
4x+6y = 32...(i) 4x-2y = 4...(ii) On subtracting (ii) from (i), we get: 8 y= 28
Q 7 - The arrangement of x/2+y/3 =4 and x+y = 10 are given by:
Answer : C
Explanation
Given equation are 3x+2y = 24 ...(i), x+y =10 ...(ii) On multiplying (ii) by 2 and subtracting from (i), we get: x=4 Putting x= 4 in (ii), we get: y = (10-4) = 6
Q 8 - The arrangement of mathematical statements 2x+ℏy= 11 and 5x-7y = 5 have no arrangement when:
Answer : C
Explanation
For no solution , we have a₁/a₂ = b₁/b₂ ≠c₁/c₂ i.e. 2/5 = ℏ/-7 ≠11/5 ⇒ℏ= -14/5
Q 9 - The arrangement of comparisons x+2y = 3 and 2x+ 4y = 3 have:
Answer : B
Explanation
Here a₁/a₂= 1/2, b₁/b₂=2/4=1/2 and c₁/c₂=3/3=1. ∴ a₁/a₂=b₁/b₂≠c₁/c₂. ∴Give system has no solution.
Answer : A
Explanation
3x -5y=5 ...(i), 7x=5x+5y⇒2x-5y=0 ...(ii) On subtracting (ii) from (i), we get=5. 3*5-5y=5⇒5y=10⇒y=2. ∴(x-y) = (5-2) =3.