
- Automata Theory Tutorial
- Automata Theory - Home
- Automata Theory Introduction
- Deterministic Finite Automaton
- Non-deterministic Finite Automaton
- NDFA to DFA Conversion
- DFA Minimization
- Moore & Mealy Machines
- Classification of Grammars
- Introduction to Grammars
- Language Generated by Grammars
- Chomsky Grammar Classification
- Regular Grammar
- Regular Expressions
- Regular Sets
- Arden's Theorem
- Constructing FA from RE
- Pumping Lemma for Regular Grammar
- DFA Complement
- Context-Free Grammars
- Context-Free Grammar Introduction
- Ambiguity in Grammar
- CFL Closure Properties
- CFG Simplification
- Chomsky Normal Form
- Greibach Normal Form
- Pumping Lemma for CFG
- Pushdown Automata
- Pushdown Automata Introduction
- Pushdown Automata Acceptance
- PDA & Context Free Grammar
- PDA & Parsing
- Turing Machine
- Turing Machine Introduction
- Accepted & Decided Language
- Multi-tape Turing Machine
- Multi-Track Turing Machine
- Non-Deterministic Turing Machine
- Semi-Infinite Tape Turing Machine
- Linear Bounded Automata
- Decidability
- Language Decidability
- Undecidable Language
- Turing Machine Halting Problem
- Rice Theorem
- Post Correspondence Problem
- Automata Theory Useful Resources
- Automata Theory - Quick Guide
- Automata Theory - Useful Resources
- Automata Theory - Discussion
Semi-Infinite Tape Turing Machine
A Turing Machine with a semi-infinite tape has a left end but no right end. The left end is limited with an end marker.

It is a two-track tape −
Upper track − It represents the cells to the right of the initial head position.
Lower track − It represents the cells to the left of the initial head position in reverse order.
The infinite length input string is initially written on the tape in contiguous tape cells.
The machine starts from the initial state q0 and the head scans from the left end marker ‘End’. In each step, it reads the symbol on the tape under its head. It writes a new symbol on that tape cell and then it moves the head either into left or right one tape cell. A transition function determines the actions to be taken.
It has two special states called accept state and reject state. If at any point of time it enters into the accepted state, the input is accepted and if it enters into the reject state, the input is rejected by the TM. In some cases, it continues to run infinitely without being accepted or rejected for some certain input symbols.
Note − Turing machines with semi-infinite tape are equivalent to standard Turing machines.