
- Automata Theory Tutorial
- Automata Theory - Home
- Automata Theory Introduction
- Deterministic Finite Automaton
- Non-deterministic Finite Automaton
- NDFA to DFA Conversion
- DFA Minimization
- Moore & Mealy Machines
- Classification of Grammars
- Introduction to Grammars
- Language Generated by Grammars
- Chomsky Grammar Classification
- Regular Grammar
- Regular Expressions
- Regular Sets
- Arden's Theorem
- Constructing FA from RE
- Pumping Lemma for Regular Grammar
- DFA Complement
- Context-Free Grammars
- Context-Free Grammar Introduction
- Ambiguity in Grammar
- CFL Closure Properties
- CFG Simplification
- Chomsky Normal Form
- Greibach Normal Form
- Pumping Lemma for CFG
- Pushdown Automata
- Pushdown Automata Introduction
- Pushdown Automata Acceptance
- PDA & Context Free Grammar
- PDA & Parsing
- Turing Machine
- Turing Machine Introduction
- Accepted & Decided Language
- Multi-tape Turing Machine
- Multi-Track Turing Machine
- Non-Deterministic Turing Machine
- Semi-Infinite Tape Turing Machine
- Linear Bounded Automata
- Decidability
- Language Decidability
- Undecidable Language
- Turing Machine Halting Problem
- Rice Theorem
- Post Correspondence Problem
- Automata Theory Useful Resources
- Automata Theory - Quick Guide
- Automata Theory - Useful Resources
- Automata Theory - Discussion
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Turing Machine Halting Problem
Input − A Turing machine and an input string w.
Problem − Does the Turing machine finish computing of the string w in a finite number of steps? The answer must be either yes or no.
Proof − At first, we will assume that such a Turing machine exists to solve this problem and then we will show it is contradicting itself. We will call this Turing machine as a Halting machine that produces a ‘yes’ or ‘no’ in a finite amount of time. If the halting machine finishes in a finite amount of time, the output comes as ‘yes’, otherwise as ‘no’. The following is the block diagram of a Halting machine −

Now we will design an inverted halting machine (HM)’ as −
If H returns YES, then loop forever.
If H returns NO, then halt.
The following is the block diagram of an ‘Inverted halting machine’ −

Further, a machine (HM)2 which input itself is constructed as follows −
- If (HM)2 halts on input, loop forever.
- Else, halt.
Here, we have got a contradiction. Hence, the halting problem is undecidable.