
- MATLAB - Home
- MATLAB - Overview
- MATLAB - Features
- MATLAB - Environment Setup
- MATLAB - Editors
- MATLAB - Online
- MATLAB - Workspace
- MATLAB - Syntax
- MATLAB - Variables
- MATLAB - Commands
- MATLAB - Data Types
- MATLAB - Operators
- MATLAB - Dates and Time
- MATLAB - Numbers
- MATLAB - Random Numbers
- MATLAB - Strings and Characters
- MATLAB - Text Formatting
- MATLAB - Timetables
- MATLAB - M-Files
- MATLAB - Colon Notation
- MATLAB - Data Import
- MATLAB - Data Output
- MATLAB - Normalize Data
- MATLAB - Predefined Variables
- MATLAB - Decision Making
- MATLAB - Decisions
- MATLAB - If End Statement
- MATLAB - If Else Statement
- MATLAB - If…Elseif Else Statement
- MATLAB - Nest If Statememt
- MATLAB - Switch Statement
- MATLAB - Nested Switch
- MATLAB - Loops
- MATLAB - Loops
- MATLAB - For Loop
- MATLAB - While Loop
- MATLAB - Nested Loops
- MATLAB - Break Statement
- MATLAB - Continue Statement
- MATLAB - End Statement
- MATLAB - Arrays
- MATLAB - Arrays
- MATLAB - Vectors
- MATLAB - Transpose Operator
- MATLAB - Array Indexing
- MATLAB - Multi-Dimensional Array
- MATLAB - Compatible Arrays
- MATLAB - Categorical Arrays
- MATLAB - Cell Arrays
- MATLAB - Matrix
- MATLAB - Sparse Matrix
- MATLAB - Tables
- MATLAB - Structures
- MATLAB - Array Multiplication
- MATLAB - Array Division
- MATLAB - Array Functions
- MATLAB - Functions
- MATLAB - Functions
- MATLAB - Function Arguments
- MATLAB - Anonymous Functions
- MATLAB - Nested Functions
- MATLAB - Return Statement
- MATLAB - Void Function
- MATLAB - Local Functions
- MATLAB - Global Variables
- MATLAB - Function Handles
- MATLAB - Filter Function
- MATLAB - Factorial
- MATLAB - Private Functions
- MATLAB - Sub-functions
- MATLAB - Recursive Functions
- MATLAB - Function Precedence Order
- MATLAB - Map Function
- MATLAB - Mean Function
- MATLAB - End Function
- MATLAB - Error Handling
- MATLAB - Error Handling
- MATLAB - Try...Catch statement
- MATLAB - Debugging
- MATLAB - Plotting
- MATLAB - Plotting
- MATLAB - Plot Arrays
- MATLAB - Plot Vectors
- MATLAB - Bar Graph
- MATLAB - Histograms
- MATLAB - Graphics
- MATLAB - 2D Line Plot
- MATLAB - 3D Plots
- MATLAB - Formatting a Plot
- MATLAB - Logarithmic Axes Plots
- MATLAB - Plotting Error Bars
- MATLAB - Plot a 3D Contour
- MATLAB - Polar Plots
- MATLAB - Scatter Plots
- MATLAB - Plot Expression or Function
- MATLAB - Draw Rectangle
- MATLAB - Plot Spectrogram
- MATLAB - Plot Mesh Surface
- MATLAB - Plot Sine Wave
- MATLAB - Interpolation
- MATLAB - Interpolation
- MATLAB - Linear Interpolation
- MATLAB - 2D Array Interpolation
- MATLAB - 3D Array Interpolation
- MATLAB - Polynomials
- MATLAB - Polynomials
- MATLAB - Polynomial Addition
- MATLAB - Polynomial Multiplication
- MATLAB - Polynomial Division
- MATLAB - Derivatives of Polynomials
- MATLAB - Transformation
- MATLAB - Transforms
- MATLAB - Laplace Transform
- MATLAB - Laplacian Filter
- MATLAB - Laplacian of Gaussian Filter
- MATLAB - Inverse Fourier transform
- MATLAB - Fourier Transform
- MATLAB - Fast Fourier Transform
- MATLAB - 2-D Inverse Cosine Transform
- MATLAB - Add Legend to Axes
- MATLAB - Object Oriented
- MATLAB - Object Oriented Programming
- MATLAB - Classes and Object
- MATLAB - Functions Overloading
- MATLAB - Operator Overloading
- MATLAB - User-Defined Classes
- MATLAB - Copy Objects
- MATLAB - Algebra
- MATLAB - Linear Algebra
- MATLAB - Gauss Elimination
- MATLAB - Gauss-Jordan Elimination
- MATLAB - Reduced Row Echelon Form
- MATLAB - Eigenvalues and Eigenvectors
- MATLAB - Integration
- MATLAB - Integration
- MATLAB - Double Integral
- MATLAB - Trapezoidal Rule
- MATLAB - Simpson's Rule
- MATLAB - Miscellenous
- MATLAB - Calculus
- MATLAB - Differential
- MATLAB - Inverse of Matrix
- MATLAB - GNU Octave
- MATLAB - Simulink
MATLAB - Plot Expression or Function
MATLAB provides powerful tools for visualizing mathematical expressions or functions. You can plot a wide range of functions, from simple linear equations to complex mathematical expressions, and visualize them in 2D or 3D space. This capability is particularly useful for engineers, scientists, and mathematicians who need to analyze and understand the behavior of mathematical functions.
Plotting of expression or function can be done using the following methods in matlab.
- fplot() for 2D plotting
- fplot3() for 3D plotting
Using fplot() in Matlab
The fplot() function in MATLAB is used to plot a function of one variable over a specified range. It is particularly useful for visualizing mathematical functions and expressions.
Syntax
fplot(f) fplot(f,xinterval) fplot(funx,funy) fplot(funx,funy,tinterval) fplot(___,LineSpec) fplot(___,Name,Value) fplot(ax,___)
Let us understand the syntax in detail.
fplot(f) − Function displays the graph of the function y = f(x) over the default interval [-5 5] for x.
fplot(f,xinterval) − Function plots the graph over a specified interval. The interval should be specified as a two-element vector in the form [xmin xmax].
fplot(funx,funy) − Function displays the curve defined by the parametric equations x = funx(t) and y = funy(t) over the default interval [-5 5] for t.
fplot(funx,funy,tinterval) − The fplot(funx, funy, tinterval) function plots the parametric curve defined by x = funx(t) and y = funy(t) over a specified interval. The interval should be specified as a two-element vector in the form [tmin tmax].
fplot(___,LineSpec) − The fplot(___, LineSpec) option allows you to specify the line style, marker symbol, and line color for the plot. For instance, using '-r' will plot a red line. This option can be used after any of the input argument combinations in the previous syntaxes.
fplot(___,Name,Value) − Using fplot(___, Name, Value) allows you to specify line properties using one or more name-value pair arguments. For example, 'LineWidth', 2 specifies a line width of 2 points. This option can be used after any of the input argument combinations in the previous syntaxes.
fplot(ax,___) − Function plots the graph into the axes specified by ax instead of the current axes (gca). The axes should be specified as the first input argument.
Let us execute a few examples for each of the syntax we have listed above.
Example 1: Using fplot(f)
Consider we want to plot for the function y = x2
Using the function fplot().
% Define the function f = @(x) x.^2; % Plot the function fplot(f)
When you execute the above code in matlab command window the output is −

Example 2: Using fplot(f,xinterval)
Let's say we want to plot the function y = x3 over the interval [-2, 2].
The code we have is −
% Define the function f = @(x) x.^3; % Specify the interval xinterval = [-2, 2]; % Plot the function over the specified interval fplot(f, xinterval)
In this example, we first define the function y = x3 using an anonymous function f = @(x) x.^3. We then specify the interval as xinterval = [-2, 2]. The fplot(f, xinterval) function plots this function over the specified interval [-2, 2] for x. Finally, we add a title and labels to the plot for better understanding.
When you execute the code the output is −

Example 3: Using fplot(funx,funy)
Let's say we want to plot a circle using parametric equations −
x=cos(t)
y=sin(t)
% Define the parametric equations for a circle funx = @(t) cos(t); funy = @(t) sin(t); % Plot the circle fplot(funx, funy)
In this example, we define the parametric equations for a circle using anonymous functions funx = @(t) cos(t) and funy = @(t) sin(t). The fplot(funx, funy) function then plots the circle defined by these parametric equations over the default interval [-5 5] for t.
When you execute the code the output is −

Example 4: Using fplot(funx,funy,tinterval)
Let's say we want to plot a cardioid using parametric equations −
x=2cos(t)(1cos(t))
y=2sin(t)(1cos(t))
over the interval [0,2]
% Define the parametric equations for a cardioid funx = @(t) 2 * cos(t) .* (1 - cos(t)); funy = @(t) 2 * sin(t) .* (1 - cos(t)); % Specify the interval tinterval = [0, 2*pi]; % Plot the cardioid fplot(funx, funy, tinterval)
In this example, we define the parametric equations for a cardioid using anonymous functions funx and funy. We then specify the interval tinterval = [0, 2*pi] for the parameter t. The fplot(funx, funy, tinterval) function then plots the cardioid over this specified interval.
When the code is executed the output is −

Example 5: Using fplot(___,LineSpec)
Let's say we want to plot the function y = x2 using a dashed green line.
% Define the function f = @(x) x.^2; % Plot the function with line style '-.' (dashed) and color 'g' (green) fplot(f, '-.g')
In this example, we use the '-.' LineSpec to specify a dashed line ('-') with a marker ('.') and color ('g' for green). The fplot(f, '-.g') function then plots the function y = x2 using the specified line style, marker, and color.
When you execute the code the output is −

Example 6: Using fplot(___,Name,Value)
Let's say we want to plot the function y=sin(x) with a thicker red line.
% Define the function f = @(x) sin(x); % Plot the function with line width of 2 points and color 'r' (red) fplot(f, 'LineWidth', 2, 'Color', 'r')
In this example, we use the 'LineWidth' name-value pair argument to specify a line width of 2 points, and the 'Color' name-value pair argument to specify the color red ('r'). The fplot(f, 'LineWidth', 2, 'Color', 'r') function then plots the function y=sin(x) using the specified line width and color.
When you execute the code the output is −

Example 7: Using fplot(ax,___)
Let's say we want to plot the function y = x2 into a specific set of axes instead of the default axes.
The code for above is −
% Define the function f = @(x) x.^2; % Create a new figure and axes figure; ax = axes; % Plot the function into the specified axes fplot(ax, f)
In this example, we first create a new figure and axes using figure and axes functions. We then use the fplot(ax, f) function to plot the function y = x2 into the axes specified by ax.
When you execute the code in matlab command window the output is −

Using fplot3() in Matlab
In MATLAB, the fplot3() function is used to plot 3D parametric curves. It allows you to visualize curves defined by parametric equations in three-dimensional space. This can be useful for understanding the shape and behavior of complex curves in 3D geometry.
Syntax
fplot3(xt,yt,zt) fplot3(xt,yt,zt,[tmin tmax]) fplot3(___,LineSpec) fplot3(___,Name,Value)
Let us understand the explanation of syntax in detail.
fplot3(xt,yt,zt) − Function plots the parametric curve represented by x(t)=xt,y(t)=yt, and z(t)=zt over the default interval 5<t<5.
fplot3(xt,yt,zt,[tmin tmax]) − Function plots the parametric curve represented by x(t)=xt, y(t)=yt, and z(t)=zt over the interval tmin<t<tmax.
fplot3(___,LineSpec) − Function utilizes LineSpec to specify the line style, marker symbol, and line color for the plot.
fplot3(___,Name,Value) − Allows you to specify line properties using one or more Name,Value pair arguments. These settings apply to all the lines plotted. To set options for individual lines, use the objects returned by fplot3.
Now let us see an example for each of the syntax we explained above.
Example 1: Using fplot3(xt,yt,zt)
Let's say we want to plot a helix in 3D space given by the parametric equations −
x(t)=cos(t)
y(t)=sin(t)
z(t)=t
The code to plot is −
% Define the parametric equations xt = @(t) cos(t); yt = @(t) sin(t); zt = @(t) t; % Plot the 3D parametric curve fplot3(xt, yt, zt)
In this example, the fplot3(xt, yt, zt) function plots the helix in 3D space using the specified parametric equations. The resulting plot shows the helix extending along the z-axis as t increases, forming a spiral shape in 3D space over the default interval 5<t<5.
When you execute the code in matlab command window the output is −

Example 2: Using fplot3(xt,yt,zt,[tmin tmax])
Let's say we want to plot a portion of the helix in 3D space given by the parametric equations −
x(t)=cos(t)
y(t)=sin(t)
z(t)=t
Over the interval 0<t<4.
The code to plot is −
xt = @(t) cos(t); yt = @(t) sin(t); zt = @(t) t; tmin = 0; tmax = 4*pi; fplot3(xt, yt, zt, [tmin, tmax])
In this example, the fplot3(xt, yt, zt, [tmin, tmax]) function plots a portion of the helix in 3D space over the specified interval 0<t<4. The resulting plot shows the helix extending along the z-axis as t increases from 0 to 4, forming a spiral shape in 3D space.
When the code is executed in matlab command the output is −

Example 3: Using fplot3(___,LineSpec)
Let's say we want to plot the parametric curve represented by the functions x(t)=cos(t), y(t)=sin(t), and z(t)=t in 3D space, and we want the curve to be displayed as a red dashed line.
The code for it is −
xt = @(t) cos(t); yt = @(t) sin(t); zt = @(t) t; fplot3(xt, yt, zt, '-r')
In this example, the fplot3(xt, yt, zt, '-r') function plots the parametric curve in 3D space using the specified parametric equations and LineSpec -r (dashed red line). The resulting plot shows the curve in red color with a dashed line style.
When the code is executed the output is −

Example 4: Using fplot3(___,Name,Value)
Let's say we want to plot the parametric curve represented by the functions x(t)=cos(t), y(t)=sin(t), and z(t)=t in 3D space, and we want the curve to be displayed with a thicker line width and a blue color.
The code we have is −
xt = @(t) cos(t); yt = @(t) sin(t); zt = @(t) t; fplot3(xt, yt, zt, 'LineWidth', 2, 'Color', 'b')
In this example, the fplot3(xt, yt, zt, 'LineWidth', 2, 'Color', 'b') function plots the parametric curve in 3D space using the specified parametric equations and line properties. The resulting plot shows the curve with a thicker line width of 2 points and a blue color.
When you execute the code in matlab command window the output is −
