- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
What is Mean Square Error?
The mean square error (MSE) is defined as mean or average of the square of the difference between actual and estimated values.
Mathematically, the mean square error is,
$$\mathrm{\varepsilon =\frac{1}{t_{2}-t_{1}}\int_{t_{1}}^{t_{2}}\left [ x(t) -\sum_{r=1}^{n}C_{r}g_{r}(t)\right ]^{2}dt}$$
$$\mathrm{\varepsilon =\frac{1}{t_{2}-t_{1}}\left [ \int_{t_{1}}^{t_{2}}x^{2}(t)dt+\sum_{r=1}^{n}C_{r}^{2}\int_{t_{1}}^{t_{2}}g_{r}^{2}(t)dt-2\sum_{r=1}^{n}C_{r}\int_{t_{1}}^{t_{2}}x(t)g_{r}(t)dt\right ]\; ...(1)}$$
$$\mathrm{\therefore C_{r}=\frac{\int_{t_{1}}^{t_{2}}x(t)g_{r}(t)dt}{\int_{t_{1}}^{t_{2}}g_{r}^{2}(t)dt}=\frac{1}{K_{r}}\int_{t_{1}}^{t_{2}}x(t)g_{r}(t)dt\; \; ...(2)}$$
$$\mathrm{\therefore \int_{t_{1}}^{t_{2}}x(t)g_{r}(t)dt=C_{r}\int_{t_{1}}^{t_{2}}g_{r}^{2}(t)dt=C_{r}K_{r}\; \; ...(3)}$$
Using equations (1) and (3), we have,
$$\mathrm{\varepsilon =\frac{1}{t_{2}-t_{1}}\left [\int_{t_{1}}^{t_{2}} x^{2}(t)dt +\sum_{r=1}^{n}C^{2}_{r}K_{r}-2\sum_{r=1}^{n}C^{2}_{r}K_{r}\right ]}$$
$$\mathrm{\Rightarrow \varepsilon =\frac{1}{t_{2}-t_{1}}\left [\int_{t_{1}}^{t_{2}} x^{2}(t)dt -\sum_{r=1}^{n}C^{2}_{r}K_{r}\right ]\; \; ...(4)}$$
$$\mathrm{\Rightarrow \varepsilon =\frac{1}{t_{2}-t_{1}}\left [ \int_{t_{1}}^{t_{2}}x^{2}(t)dt-(C_{1}^{2}K_{1}+C_{2}^{2}K_{2}+\cdot \cdot \cdot +C_{n}^{2}K_{n}) \right ]\; \; \cdot \cdot \cdot (5)}$$
Therefore, the mean square error can be evaluated using eqn. (5).
Numerical Example
A rectangular function is defined as,
$$\mathrm{x(t)=\left\{\begin{matrix} 1\; \; for\, 0< t< \Pi \ -1\; \; for\, \Pi< t< 2\Pi\ \end{matrix}\right.}$$
The signal x(t) is approximated to a sinusoidal function $\mathrm{x(t)=\frac{4}{\Pi }\sin t}$ sin 𝑡 over the interval [0, 2π]. Evaluate the mean square error in this approximation.
Solution
The approximation of the rectangular function x(t) by a sinusoidal signal sin 𝑡 is shown in the figure and is given by,
$$\mathrm{x(t)=\frac{4}{\Pi }\sin t}$$
The mean square error in this approximation can be evaluated using the formula,
$$\mathrm{\Rightarrow \varepsilon =\frac{1}{t_{2}-t_{1}}\left [\int_{t_{1}}^{t_{2}} x^{2}(t)\: dt-\int_{t_{1}}^{t_{2}} \left ( \frac{4}{\pi }\sin t \right )^{2}\; dt\right] }$$
Here, 𝑡1 = 0 and 𝑡2 = 2𝜋, therefore,
$$\mathrm{\Rightarrow \varepsilon =\frac{1}{2\pi -0}\left [\int_{0}^{2\pi } 1\: dt-(\frac{4}{\pi })^{2}\int_{0}^{2\pi } \sin^{2} t\; dt\right] }$$
$$\mathrm{\Rightarrow \varepsilon =\frac{1}{2\pi}\left [\int_{0}^{2\pi }\: dt-\left ( \frac{4}{\pi } \right )^{2}\int_{0}^{2\pi } \left ( \frac{1-cos2t}{2} \right )\; dt\right] }$$
$$\mathrm{\Rightarrow \varepsilon =\frac{1}{2\pi}\left [\int_{0}^{2\pi }\: dt-\left ( \frac{16}{\pi^{2} } \right )\int_{0}^{2\pi } \left ( \frac{1-cos2t}{2} \right )\; dt\right] }$$
$$\mathrm{\Rightarrow \varepsilon =\frac{1}{2\pi}\left [\left [ t \right ]_{0}^{2\pi }-\frac{16}{2\pi ^{2}}\left [ t-\frac{sin2t}{2} \right ]_{0}^{2\pi }\right] }$$
$$\mathrm{\Rightarrow \varepsilon =\frac{1}{2\pi }\left [ \left ( 2\pi -0 \right )-\frac{8}{\pi ^{2}}\begin{Bmatrix} (2\pi -0)-\left ( \frac{sin4\pi -sin0}{2} \right )\ \end{Bmatrix} \right ]}$$
$$\mathrm{\Rightarrow \varepsilon =\frac{1}{2\pi }\left [ 2\pi -\frac{16}{\pi} \right ]=1-\frac{8}{\pi ^{2}}=0.189}$$
∴ Mean square error, 𝜀 = 0.189 = 18.9%
- Related Articles
- What is mean by square root ?
- How to calculate root mean square error for linear model in R?
- C++ Program to implement standard error of mean
- What is Error Detection?
- What is Error Correction?
- What is Parallax error ?
- What does "Fatal error: Unexpectedly found nil while unwrapping an Optional value" mean?
- What is mean ?
- What is JavaScript Error Constructor?
- How to find the standard error of mean in R?
- How to measure the mean absolute error (MAE) in PyTorch?
- How to calculate standard error of the mean in Excel?
- What Is Arithmetic Mean?
- What is mean by beaker?
- What is C++ Standard Error Stream (cerr)?
