Common Laplace Transform Pairs



Laplace Transform

The linear time invariant (LTI) system is described by differential equations. The Laplace transform is a mathematical tool which converts the differential equations in time domain into algebraic equations in the frequency domain (or s-domain).

If x(t) is a time function, then the Laplace transform of the function is defined as −

$$\mathrm{L[x(t)] \:=\: X(s) \:=\: \int_{-\infty}^{\infty}\: x(t) e^{-st} \: dt\:\:\dotso\:(1)}$$

Where, s is a complex variable and it is given by,

$$\mathrm{s \:=\: \sigma \:+\: j\omega}$$

Inverse Laplace Transform

The inverse Laplace transform is defined as −

$$\mathrm{L^{-1}[X(s)] \:=\: x(t)\:=\: \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty}\: X(s) e^{st} \: ds\:\:\dotso\:(2)}$$

The equations (1) and (2) constitute the Laplace transform pair, and it may be represented as,

$$\mathrm{x(t) \:\overset{LT}\longleftrightarrow\: X(s)}$$

Common Laplace Transform Pairs

Following table provides a number of Laplace transforms. The table also specifies the region of convergence (ROC) −

Function $\mathrm{\{x(t) \:=\: L^{−1}[x(t)]\}}$ Laplace Transform $\mathrm{\{L[x(t)] \:=\: X(s)\}}$ Region of Convergence (ROC)
$\mathrm{\delta(t)}$ $\mathrm{1}$ $\mathrm{All s}$
$\mathrm{\delta(t\:−\:a)}$ $\mathrm{e^{−as}}$ $\mathrm{All s}$
$\mathrm{u(t)}$ $\mathrm{\frac{1}{s}}$ $\mathrm{Re(s) \:\gt\: 0}$
$\mathrm{u(t\:−\:a)}$ $\mathrm{\frac{e^{−as}}{s}}$ $\mathrm{Re(s) \:\gt\: 0}$
$\mathrm{u(−t)}$ $\mathrm{−\frac{1}{s}}$ $\mathrm{Re(s) \:\lt\: 0}$
$\mathrm{tu(t)}$ $\mathrm{\frac{1}{s^2}}$ $\mathrm{Re(s)\:\gt\:0}$
$\mathrm{t^2u(t)}$ $\mathrm{\frac{2!}{s^3}}$ $\mathrm{Re(s) \:\gt\: 0}$
$\mathrm{t^nu(t)}$ $\mathrm{\frac{n!}{s^{(n+1)}}}$ $\mathrm{Re(s) \:\gt\: 0}$
$\mathrm{e^{−at}u(t)}$ $\mathrm{\frac{1}{(s\:+\:a)}}$ $\mathrm{Re(s) \:\gt\: −a}$
$\mathrm{e^{at}u(t)}$ $\mathrm{\frac{1}{(s\:−\:a)}}$ $\mathrm{Re(s) \:\gt\: a}$
$\mathrm{te^{−at}u(t)}$ $\mathrm{\frac{1}{(s\:+\:a)^2}}$ $\mathrm{Re(s) \:\gt\: −a}$
$\mathrm{t^ne^{−at}u(t)}$ $\mathrm{\frac{n!}{(s+a)^{n+1}}}$ $\mathrm{Re(s) \:\gt\: −a}$
$\mathrm{sin\:\omega t\:u(t)}$ $\mathrm{\frac{\omega}{(s^2\:+\:\omega^2)}}$ $\mathrm{Re(s) \:\gt\: 0}$
$\mathrm{cos\:\omega t\:u(t)}$ $\mathrm{\frac{s}{(s^2\:+\:\omega^2)}}$ $\mathrm{Re(s) \:\gt\: 0}$
$\mathrm{e^{−at}sin\:\omega t\:u(t)}$ $\mathrm{\frac{\omega}{(s\:+\:a)^2\:+\:\omega^2}}$ $\mathrm{Re(s) \:\gt\: −a}$
$\mathrm{e^{−at}cos\:\omega\:t\:u(t)}$ $\mathrm{\frac{(s\:+\:a)}{(s\:+\:a)^2\:+\:\omega^2}}$ $\mathrm{Re(s) \:\gt\: −a}$
$\mathrm{sin(\omega t \:+\: \theta)}$ $\mathrm{\frac{s\:sin\theta \:+\: \omega\:cos\theta}{(s^2 \:+\: \omega^2 )}}$ $\mathrm{Re(s) \:\gt\: 0}$
$\mathrm{cos(\omega t \:+\: \theta)}$ $\mathrm{\frac{s\:cos\theta \:+\: \omega\:sin\theta}{(s^2 \:+\: \omega^2 )}}$ $\mathrm{Re(s) \:\gt\: 0}$
$\mathrm{t\:sin\:\omega t\:u(t)}$ $\mathrm{\frac{2\omega s}{(s^2 \:+\: \omega^2)^2}}$ $\mathrm{Re(s) \:\gt\: 0}$
$\mathrm{t\:cos\:\omega t\:u(t)}$ $\mathrm{\frac{(s^2 \:−\: \omega^2)}{(s^2 \:+\:\omega^2)^2}}$ $\mathrm{Re(s) \:\gt\: 0}$
$\mathrm{sin\:h\:\omega t\:u(t)}$ $\mathrm{\frac{\omega}{(s^2 \:−\: \omega^2)}}$ $\mathrm{Re(s) \:\gt\: \omega}$
$\mathrm{cos\:h\:\omega t\:u(t)}$ $\mathrm{\frac{s}{(s^2 \:−\: \omega^2)}}$ $\mathrm{Re(s) \:\gt\: \omega}$
$\mathrm{e^{−at}sin\:h\:\omega t\:u(t)}$ $\mathrm{\frac{\omega}{(s\:+\:a)^2 \:−\: \omega^2}}$ $\mathrm{Re(s) \:\gt\: (\omega \:−\: a)}$
$\mathrm{e^{−at}cos\:h\:\omega t\:u(t)}$ $\mathrm{\frac{s\:+\:a}{(s\:+\:a)^2 \:−\: \omega^2}}$ $\mathrm{Re(s) \:\gt\: (\omega − a)}$
Advertisements