
- Signals & Systems Home
- Signals & Systems Overview
- Introduction
- Signals Basic Types
- Signals Classification
- Signals Basic Operations
- Systems Classification
- Types of Signals
- Representation of a Discrete Time Signal
- Continuous-Time Vs Discrete-Time Sinusoidal Signal
- Even and Odd Signals
- Properties of Even and Odd Signals
- Periodic and Aperiodic Signals
- Unit Step Signal
- Unit Ramp Signal
- Unit Parabolic Signal
- Energy Spectral Density
- Unit Impulse Signal
- Power Spectral Density
- Properties of Discrete Time Unit Impulse Signal
- Real and Complex Exponential Signals
- Addition and Subtraction of Signals
- Amplitude Scaling of Signals
- Multiplication of Signals
- Time Scaling of Signals
- Time Shifting Operation on Signals
- Time Reversal Operation on Signals
- Even and Odd Components of a Signal
- Energy and Power Signals
- Power of an Energy Signal over Infinite Time
- Energy of a Power Signal over Infinite Time
- Causal, Non-Causal, and Anti-Causal Signals
- Rectangular, Triangular, Signum, Sinc, and Gaussian Functions
- Signals Analysis
- Types of Systems
- What is a Linear System?
- Time Variant and Time-Invariant Systems
- Linear and Non-Linear Systems
- Static and Dynamic System
- Causal and Non-Causal System
- Stable and Unstable System
- Invertible and Non-Invertible Systems
- Linear Time-Invariant Systems
- Transfer Function of LTI System
- Properties of LTI Systems
- Response of LTI System
- Fourier Series
- Fourier Series
- Fourier Series Representation of Periodic Signals
- Fourier Series Types
- Trigonometric Fourier Series Coefficients
- Exponential Fourier Series Coefficients
- Complex Exponential Fourier Series
- Relation between Trigonometric & Exponential Fourier Series
- Fourier Series Properties
- Properties of Continuous-Time Fourier Series
- Time Differentiation and Integration Properties of Continuous-Time Fourier Series
- Time Shifting, Time Reversal, and Time Scaling Properties of Continuous-Time Fourier Series
- Linearity and Conjugation Property of Continuous-Time Fourier Series
- Multiplication or Modulation Property of Continuous-Time Fourier Series
- Convolution Property of Continuous-Time Fourier Series
- Convolution Property of Fourier Transform
- Parseval’s Theorem in Continuous Time Fourier Series
- Average Power Calculations of Periodic Functions Using Fourier Series
- GIBBS Phenomenon for Fourier Series
- Fourier Cosine Series
- Trigonometric Fourier Series
- Derivation of Fourier Transform from Fourier Series
- Difference between Fourier Series and Fourier Transform
- Wave Symmetry
- Even Symmetry
- Odd Symmetry
- Half Wave Symmetry
- Quarter Wave Symmetry
- Wave Symmetry
- Fourier Transforms
- Fourier Transforms Properties
- Fourier Transform – Representation and Condition for Existence
- Properties of Continuous-Time Fourier Transform
- Table of Fourier Transform Pairs
- Linearity and Frequency Shifting Property of Fourier Transform
- Modulation Property of Fourier Transform
- Time-Shifting Property of Fourier Transform
- Time-Reversal Property of Fourier Transform
- Time Scaling Property of Fourier Transform
- Time Differentiation Property of Fourier Transform
- Time Integration Property of Fourier Transform
- Frequency Derivative Property of Fourier Transform
- Parseval’s Theorem & Parseval’s Identity of Fourier Transform
- Fourier Transform of Complex and Real Functions
- Fourier Transform of a Gaussian Signal
- Fourier Transform of a Triangular Pulse
- Fourier Transform of Rectangular Function
- Fourier Transform of Signum Function
- Fourier Transform of Unit Impulse Function
- Fourier Transform of Unit Step Function
- Fourier Transform of Single-Sided Real Exponential Functions
- Fourier Transform of Two-Sided Real Exponential Functions
- Fourier Transform of the Sine and Cosine Functions
- Fourier Transform of Periodic Signals
- Conjugation and Autocorrelation Property of Fourier Transform
- Duality Property of Fourier Transform
- Analysis of LTI System with Fourier Transform
- Relation between Discrete-Time Fourier Transform and Z Transform
- Convolution and Correlation
- Convolution in Signals and Systems
- Convolution and Correlation
- Correlation in Signals and Systems
- System Bandwidth vs Signal Bandwidth
- Time Convolution Theorem
- Frequency Convolution Theorem
- Energy Spectral Density and Autocorrelation Function
- Autocorrelation Function of a Signal
- Cross Correlation Function and its Properties
- Detection of Periodic Signals in the Presence of Noise (by Autocorrelation)
- Detection of Periodic Signals in the Presence of Noise (by Cross-Correlation)
- Autocorrelation Function and its Properties
- PSD and Autocorrelation Function
- Sampling
- Signals Sampling Theorem
- Nyquist Rate and Nyquist Interval
- Signals Sampling Techniques
- Effects of Undersampling (Aliasing) and Anti Aliasing Filter
- Different Types of Sampling Techniques
- Laplace Transform
- Laplace Transforms
- Common Laplace Transform Pairs
- Laplace Transform of Unit Impulse Function and Unit Step Function
- Laplace Transform of Sine and Cosine Functions
- Laplace Transform of Real Exponential and Complex Exponential Functions
- Laplace Transform of Ramp Function and Parabolic Function
- Laplace Transform of Damped Sine and Cosine Functions
- Laplace Transform of Damped Hyperbolic Sine and Cosine Functions
- Laplace Transform of Periodic Functions
- Laplace Transform of Rectifier Function
- Laplace Transforms Properties
- Linearity Property of Laplace Transform
- Time Shifting Property of Laplace Transform
- Time Scaling and Frequency Shifting Properties of Laplace Transform
- Time Differentiation Property of Laplace Transform
- Time Integration Property of Laplace Transform
- Time Convolution and Multiplication Properties of Laplace Transform
- Initial Value Theorem of Laplace Transform
- Final Value Theorem of Laplace Transform
- Parseval's Theorem for Laplace Transform
- Laplace Transform and Region of Convergence for right sided and left sided signals
- Laplace Transform and Region of Convergence of Two Sided and Finite Duration Signals
- Circuit Analysis with Laplace Transform
- Step Response and Impulse Response of Series RL Circuit using Laplace Transform
- Step Response and Impulse Response of Series RC Circuit using Laplace Transform
- Step Response of Series RLC Circuit using Laplace Transform
- Solving Differential Equations with Laplace Transform
- Difference between Laplace Transform and Fourier Transform
- Difference between Z Transform and Laplace Transform
- Relation between Laplace Transform and Z-Transform
- Relation between Laplace Transform and Fourier Transform
- Laplace Transform – Time Reversal, Conjugation, and Conjugate Symmetry Properties
- Laplace Transform – Differentiation in s Domain
- Laplace Transform – Conditions for Existence, Region of Convergence, Merits & Demerits
- Z Transform
- Z-Transforms (ZT)
- Common Z-Transform Pairs
- Z-Transform of Unit Impulse, Unit Step, and Unit Ramp Functions
- Z-Transform of Sine and Cosine Signals
- Z-Transform of Exponential Functions
- Z-Transforms Properties
- Properties of ROC of the Z-Transform
- Z-Transform and ROC of Finite Duration Sequences
- Conjugation and Accumulation Properties of Z-Transform
- Time Shifting Property of Z Transform
- Time Reversal Property of Z Transform
- Time Expansion Property of Z Transform
- Differentiation in z Domain Property of Z Transform
- Initial Value Theorem of Z-Transform
- Final Value Theorem of Z Transform
- Solution of Difference Equations Using Z Transform
- Long Division Method to Find Inverse Z Transform
- Partial Fraction Expansion Method for Inverse Z-Transform
- What is Inverse Z Transform?
- Inverse Z-Transform by Convolution Method
- Transform Analysis of LTI Systems using Z-Transform
- Convolution Property of Z Transform
- Correlation Property of Z Transform
- Multiplication by Exponential Sequence Property of Z Transform
- Multiplication Property of Z Transform
- Residue Method to Calculate Inverse Z Transform
- System Realization
- Cascade Form Realization of Continuous-Time Systems
- Direct Form-I Realization of Continuous-Time Systems
- Direct Form-II Realization of Continuous-Time Systems
- Parallel Form Realization of Continuous-Time Systems
- Causality and Paley Wiener Criterion for Physical Realization
- Discrete Fourier Transform
- Discrete-Time Fourier Transform
- Properties of Discrete Time Fourier Transform
- Linearity, Periodicity, and Symmetry Properties of Discrete-Time Fourier Transform
- Time Shifting and Frequency Shifting Properties of Discrete Time Fourier Transform
- Inverse Discrete-Time Fourier Transform
- Time Convolution and Frequency Convolution Properties of Discrete-Time Fourier Transform
- Differentiation in Frequency Domain Property of Discrete Time Fourier Transform
- Parseval’s Power Theorem
- Miscellaneous Concepts
- What is Mean Square Error?
- What is Fourier Spectrum?
- Region of Convergence
- Hilbert Transform
- Properties of Hilbert Transform
- Symmetric Impulse Response of Linear-Phase System
- Filter Characteristics of Linear Systems
- Characteristics of an Ideal Filter (LPF, HPF, BPF, and BRF)
- Zero Order Hold and its Transfer Function
- What is Ideal Reconstruction Filter?
- What is the Frequency Response of Discrete Time Systems?
- Basic Elements to Construct the Block Diagram of Continuous Time Systems
- BIBO Stability Criterion
- BIBO Stability of Discrete-Time Systems
- Distortion Less Transmission
- Distortionless Transmission through a System
- Rayleigh’s Energy Theorem
Laplace Transform of Sine and Cosine Functions
Laplace Transform
The Laplace transform is a mathematical tool which is used to convert the differential equation in time domain into the algebraic equations in the frequency domain or s-domain.
Mathematically, if $\mathrm{x\left ( t \right )}$ is a time domain function, then its Laplace transform is defined as −
$$\mathrm{L\left [ x\left (t \right ) \right ]\:=\: X\left ( s \right )\:=\:\int_{-\infty }^{\infty}\:x\left ( t \right )e^{-st}\: dt\:\: \dotso\:(1)}$$
Equation (1) gives the bilateral Laplace transform of the function $\mathrm{x\left (t \right )}$. But for the causal signals, the unilateral Laplace transform is applied, which is defined as,
$$\mathrm{L\left [ x\left (t \right ) \right ]\:=\: X\left ( s \right )\:=\:\int_{0}^{\infty}x\left ( t \right )e^{-st}\: dt\:\: \dotso\: (2)}$$
Laplace Transform of Sine Function
Let,
$$\mathrm{x\left ( t \right )\:=\:sin\: \omega t\: u\left ( t \right )\:=\: \frac{e^{j\:\omega t }\:-\:e^{-j\:\omega t}}{2j}u\left ( t \right )}$$
Thus, from the definition of the Laplace transform, we have,
$$\mathrm{X\left ( s \right )\:=\:L\left [ sin\: \omega t\: u\left ( t \right ) \right ]\:=\:L\left [ \frac{e^{j\:\omega t }\:-\:e^{-j\:\omega t}}{2j}u\left ( t \right ) \right ]}$$
$$\mathrm{\Rightarrow\: L\left [ sin\: \omega t\: u\left ( t \right ) \right ]\:=\:\frac{1}{2j}\left\{L\left [ e^{j\:\omega t}u\left ( t \right ) \right ]\:-\:L\left [ e^{-j\:\omega t}u\left ( t \right ) \right ] \right\}} $$
$$\mathrm{\Rightarrow\: L\left [ sin\: \omega t\: u\left ( t \right ) \right ]\:=\:\frac{1}{2j}\left\{\left [ \frac{1}{\left ( s\:+\:j\:\omega \right ) } \right ]\:-\:\left [ \frac{1}{\left ( s\:-\:j\:\omega \right )} \right ] \right\}\:=\:\frac{1}{2j}\left [ \frac{s\:-\:j\:\omega \:-\:s\:-\:j\:\omega}{s^{2}\:+\:\omega^{2}} \right ]}$$
$$\mathrm{\therefore\:L\left [sin\: \omega t\: u\left ( t \right ) \right ]\:=\: \left (\frac{\omega }{s^{2}\:+\:\omega ^{2}} \right )}$$
The region of convergence (ROC) of Laplace transform of the sine function is Re(s) > 0, which is shown in Figure-1. Thus, the Laplace transform of the sine function along with its ROC is,
$$\mathrm{sin\: \omega t\: u\left ( t \right )\overset{LT}{\leftrightarrow}\left ( \frac{\omega }{s^{2}\:+\:\omega^{2}} \right )\:\: and\:\: ROC\:\rightarrow\: Re\left ( s \right )\:\gt\: 0}$$

Laplace Transform of Cosine Function
Let,
$$\mathrm{x\left ( t \right )\:=\:cos \: \omega t\: u\left ( t \right )\:=\:\frac{e^{j\:\omega t }\:+\:e^{-j\:\omega t}}{2}u\left ( t \right )}$$
Now, from the definition of Laplace transform, we have,
$$\mathrm{X\left ( s \right )\:=\:L\left [ cos\: \omega t\: u\left ( t \right ) \right ]\:=\:L\left [\frac{e^{j\:\omega t }\:+\:e^{-j\:\omega t}}{2}u\left ( t \right ) \right ]}$$
$$\mathrm{\Rightarrow\: L\left [ cos\: \omega t\: u\left ( t \right ) \right ]\:=\:\frac{1}{2}\left\{L\left [ e^{j\:\omega t}u\left ( t \right ) \right ]\:-\:L\left [ e^{-j\:\omega t}u\left ( t \right ) \right ] \right\}}$$
$$\mathrm{\Rightarrow\: L\left [ cos\: \omega t\: u\left ( t \right ) \right ]\:=\:\frac{1}{2}\left [ \left ( \frac{1}{s\:-\:j\omega } \right ) \right ]\:+\:\left [ \left ( \frac{1}{s\:+\:j\omega} \right ) \right ] \:=\:\frac{1}{2}\left [ \frac{s\:+\:j\omega \:+\:s\:-\:j\omega}{s^{2}\:+\:\omega^{2}} \right ]}$$
$$\mathrm{\Rightarrow\: L\left [ cos\:\omega t\:u\left ( t \right ) \right ]\:=\: \left (\frac{s}{s^{2}\:+\:\omega^{2}} \right )}$$
The ROC of Laplace transform of the cosine function is also Re(s) > 0 as shown in Figure-1. Therefore, the Laplace transform of the cosine function along with its ROC is,
$$\mathrm{cos\: \omega t\: u\left ( t \right )\overset{LT}{\leftrightarrow}\left ( \frac{s}{s^{2}\:+\:\omega^{2}} \right )\: \: and\: \: ROC\:\rightarrow\: Re\left (s \right )\:\gt \:0}$$
Laplace Transform of Hyperbolic Sine Function
Let,
$$\mathrm{x\left ( t \right )\:=\:sinh\: \omega t\: u\left ( t \right )\:=\:\frac{e^{\omega t }\:-\:e^{-\omega t}}{2}u\left ( t \right )} $$
Now, from the definition of the Laplace transform, we have,
$$\mathrm{X\left ( s \right )\:=\:L\left [ sinh\: \omega t\: u\left ( t \right ) \right ]\:=\:L\left [ \frac{e^{\omega t }\:-\:e^{-\omega t}}{2}u\left ( t \right ) \right ]}$$
$$\mathrm{\Rightarrow\: L\left [ sinh\: \omega t\: u\left ( t \right ) \right ]\:=\:\frac{1}{2}\left\{L\left [ e^{\omega t}u\left ( t \right ) \right ]\:-\:L\left [ e^{-\omega t}u\left ( t \right ) \right ] \right\}}$$
$$\mathrm{\Rightarrow\: L\left [ sinh\: \omega t\: u\left ( t \right ) \right ]\:=\:\frac{1}{2}\left [ \left ( \frac{1}{s\:-\:\omega } \right ) \right ]\:-\:\left [ \left ( \frac{1}{s\:+\:\omega} \right ) \right ] \:=\:\frac{1}{2}\left [ \frac{s\:+\:omega \:-\:s\:+\:\omega}{s^{2}\:-\:\omega^{2}} \right ]}$$
$$\mathrm{\therefore\: L\left [ sinh\: \omega t\: u\left ( t \right ) \right ]\:=\:\left (\frac{\omega }{s^{2}\:-\:\omega ^{2}} \right )}$$
The ROC of Laplace transform of the hyperbolic sine function is also Re(s) > 0 as shown in Figure-1 above. Therefore, the Laplace transform of the hyperbolic sine function along with its ROC is,
$$\mathrm{sinh\: \omega t\: u\left ( t \right )\overset{LT}{\leftrightarrow}\left ( \frac{\omega }{s^{2}\:-\:\omega ^{2}} \right )\:\: and\:\: ROC\:\rightarrow\: Re\left ( s \right )\:\gt\: 0}$$
Laplace Transform of Hyperbolic Cosine Function
Let,
$$\mathrm{x\left ( t \right )\:=\:cosh \: \omega t\: u\left ( t \right )\:=\:\frac{e^{\omega t }\:+\:e^{-\omega t}}{2} u\left ( t \right )}$$
Now, from the definition of the Laplace transform, we have,
$$\mathrm{X\left ( s \right )\:=\:L\left [ cosh\: \omega t\: u\left ( t \right ) \right ]\:=\:L\left [ \frac{e^{\:\omega t } \:+\: e^{-\:\omega t}}{2}u\left ( t \right ) \right ]}$$
$$\mathrm{\Rightarrow\: L\left [ cosh\: \omega t\: u\left ( t \right ) \right ]\:=\:\frac{1}{2}\left\{L\left [ e^{\omega t}u\left ( t \right ) \right ]\:+\:L\left [ e^{-\omega t}u\left ( t \right ) \right ] \right\}}$$
$$\mathrm{\Rightarrow\: L\left [ cosh\: \omega t\: u\left ( t \right ) \right ]\:=\:\frac{1}{2}\left [ \left ( \frac{1}{s\:-\:\omega } \right ) \:+\: \left ( \frac{1}{s\:+\:\omega} \right ) \right ] \:=\:\frac{1}{2}\left [ \frac{s\:+\: \omega \:+\:s\:-\:\omega}{s^{2}\:-\:\omega^{2}} \right ]}$$
$$\mathrm{\therefore\: L\left [cosh\: \omega t\: u\left ( t \right ) \right ]\:=\:\left (\frac{s}{s^{2}\:-\:\omega^{2}} \right )}$$
The ROC of Laplace transform of the hyperbolic cosine function is also Re(s) > 0 as shown above in Figure-1. Therefore, the Laplace transform of the hyperbolic sine function along with its ROC is,
$$\mathrm{cosh\: \omega t\: u\left ( t \right )\overset{LT}{\leftrightarrow}\left ( \frac{s }{s^{2}\:-\:\omega^{2}} \right )\:\: and\:\: ROC\:\rightarrow\: Re\left (s \right )\:\gt\: 0}$$