
- Signals & Systems Home
- Signals & Systems Overview
- Introduction
- Signals Basic Types
- Signals Classification
- Signals Basic Operations
- Systems Classification
- Types of Signals
- Representation of a Discrete Time Signal
- Continuous-Time Vs Discrete-Time Sinusoidal Signal
- Even and Odd Signals
- Properties of Even and Odd Signals
- Periodic and Aperiodic Signals
- Unit Step Signal
- Unit Ramp Signal
- Unit Parabolic Signal
- Energy Spectral Density
- Unit Impulse Signal
- Power Spectral Density
- Properties of Discrete Time Unit Impulse Signal
- Real and Complex Exponential Signals
- Addition and Subtraction of Signals
- Amplitude Scaling of Signals
- Multiplication of Signals
- Time Scaling of Signals
- Time Shifting Operation on Signals
- Time Reversal Operation on Signals
- Even and Odd Components of a Signal
- Energy and Power Signals
- Power of an Energy Signal over Infinite Time
- Energy of a Power Signal over Infinite Time
- Causal, Non-Causal, and Anti-Causal Signals
- Rectangular, Triangular, Signum, Sinc, and Gaussian Functions
- Signals Analysis
- Types of Systems
- What is a Linear System?
- Time Variant and Time-Invariant Systems
- Linear and Non-Linear Systems
- Static and Dynamic System
- Causal and Non-Causal System
- Stable and Unstable System
- Invertible and Non-Invertible Systems
- Linear Time-Invariant Systems
- Transfer Function of LTI System
- Properties of LTI Systems
- Response of LTI System
- Fourier Series
- Fourier Series
- Fourier Series Representation of Periodic Signals
- Fourier Series Types
- Trigonometric Fourier Series Coefficients
- Exponential Fourier Series Coefficients
- Complex Exponential Fourier Series
- Relation between Trigonometric & Exponential Fourier Series
- Fourier Series Properties
- Properties of Continuous-Time Fourier Series
- Time Differentiation and Integration Properties of Continuous-Time Fourier Series
- Time Shifting, Time Reversal, and Time Scaling Properties of Continuous-Time Fourier Series
- Linearity and Conjugation Property of Continuous-Time Fourier Series
- Multiplication or Modulation Property of Continuous-Time Fourier Series
- Convolution Property of Continuous-Time Fourier Series
- Convolution Property of Fourier Transform
- Parseval’s Theorem in Continuous Time Fourier Series
- Average Power Calculations of Periodic Functions Using Fourier Series
- GIBBS Phenomenon for Fourier Series
- Fourier Cosine Series
- Trigonometric Fourier Series
- Derivation of Fourier Transform from Fourier Series
- Difference between Fourier Series and Fourier Transform
- Wave Symmetry
- Even Symmetry
- Odd Symmetry
- Half Wave Symmetry
- Quarter Wave Symmetry
- Wave Symmetry
- Fourier Transforms
- Fourier Transforms Properties
- Fourier Transform – Representation and Condition for Existence
- Properties of Continuous-Time Fourier Transform
- Table of Fourier Transform Pairs
- Linearity and Frequency Shifting Property of Fourier Transform
- Modulation Property of Fourier Transform
- Time-Shifting Property of Fourier Transform
- Time-Reversal Property of Fourier Transform
- Time Scaling Property of Fourier Transform
- Time Differentiation Property of Fourier Transform
- Time Integration Property of Fourier Transform
- Frequency Derivative Property of Fourier Transform
- Parseval’s Theorem & Parseval’s Identity of Fourier Transform
- Fourier Transform of Complex and Real Functions
- Fourier Transform of a Gaussian Signal
- Fourier Transform of a Triangular Pulse
- Fourier Transform of Rectangular Function
- Fourier Transform of Signum Function
- Fourier Transform of Unit Impulse Function
- Fourier Transform of Unit Step Function
- Fourier Transform of Single-Sided Real Exponential Functions
- Fourier Transform of Two-Sided Real Exponential Functions
- Fourier Transform of the Sine and Cosine Functions
- Fourier Transform of Periodic Signals
- Conjugation and Autocorrelation Property of Fourier Transform
- Duality Property of Fourier Transform
- Analysis of LTI System with Fourier Transform
- Relation between Discrete-Time Fourier Transform and Z Transform
- Convolution and Correlation
- Convolution in Signals and Systems
- Convolution and Correlation
- Correlation in Signals and Systems
- System Bandwidth vs Signal Bandwidth
- Time Convolution Theorem
- Frequency Convolution Theorem
- Energy Spectral Density and Autocorrelation Function
- Autocorrelation Function of a Signal
- Cross Correlation Function and its Properties
- Detection of Periodic Signals in the Presence of Noise (by Autocorrelation)
- Detection of Periodic Signals in the Presence of Noise (by Cross-Correlation)
- Autocorrelation Function and its Properties
- PSD and Autocorrelation Function
- Sampling
- Signals Sampling Theorem
- Nyquist Rate and Nyquist Interval
- Signals Sampling Techniques
- Effects of Undersampling (Aliasing) and Anti Aliasing Filter
- Different Types of Sampling Techniques
- Laplace Transform
- Laplace Transforms
- Common Laplace Transform Pairs
- Laplace Transform of Unit Impulse Function and Unit Step Function
- Laplace Transform of Sine and Cosine Functions
- Laplace Transform of Real Exponential and Complex Exponential Functions
- Laplace Transform of Ramp Function and Parabolic Function
- Laplace Transform of Damped Sine and Cosine Functions
- Laplace Transform of Damped Hyperbolic Sine and Cosine Functions
- Laplace Transform of Periodic Functions
- Laplace Transform of Rectifier Function
- Laplace Transforms Properties
- Linearity Property of Laplace Transform
- Time Shifting Property of Laplace Transform
- Time Scaling and Frequency Shifting Properties of Laplace Transform
- Time Differentiation Property of Laplace Transform
- Time Integration Property of Laplace Transform
- Time Convolution and Multiplication Properties of Laplace Transform
- Initial Value Theorem of Laplace Transform
- Final Value Theorem of Laplace Transform
- Parseval's Theorem for Laplace Transform
- Laplace Transform and Region of Convergence for right sided and left sided signals
- Laplace Transform and Region of Convergence of Two Sided and Finite Duration Signals
- Circuit Analysis with Laplace Transform
- Step Response and Impulse Response of Series RL Circuit using Laplace Transform
- Step Response and Impulse Response of Series RC Circuit using Laplace Transform
- Step Response of Series RLC Circuit using Laplace Transform
- Solving Differential Equations with Laplace Transform
- Difference between Laplace Transform and Fourier Transform
- Difference between Z Transform and Laplace Transform
- Relation between Laplace Transform and Z-Transform
- Relation between Laplace Transform and Fourier Transform
- Laplace Transform – Time Reversal, Conjugation, and Conjugate Symmetry Properties
- Laplace Transform – Differentiation in s Domain
- Laplace Transform – Conditions for Existence, Region of Convergence, Merits & Demerits
- Z Transform
- Z-Transforms (ZT)
- Common Z-Transform Pairs
- Z-Transform of Unit Impulse, Unit Step, and Unit Ramp Functions
- Z-Transform of Sine and Cosine Signals
- Z-Transform of Exponential Functions
- Z-Transforms Properties
- Properties of ROC of the Z-Transform
- Z-Transform and ROC of Finite Duration Sequences
- Conjugation and Accumulation Properties of Z-Transform
- Time Shifting Property of Z Transform
- Time Reversal Property of Z Transform
- Time Expansion Property of Z Transform
- Differentiation in z Domain Property of Z Transform
- Initial Value Theorem of Z-Transform
- Final Value Theorem of Z Transform
- Solution of Difference Equations Using Z Transform
- Long Division Method to Find Inverse Z Transform
- Partial Fraction Expansion Method for Inverse Z-Transform
- What is Inverse Z Transform?
- Inverse Z-Transform by Convolution Method
- Transform Analysis of LTI Systems using Z-Transform
- Convolution Property of Z Transform
- Correlation Property of Z Transform
- Multiplication by Exponential Sequence Property of Z Transform
- Multiplication Property of Z Transform
- Residue Method to Calculate Inverse Z Transform
- System Realization
- Cascade Form Realization of Continuous-Time Systems
- Direct Form-I Realization of Continuous-Time Systems
- Direct Form-II Realization of Continuous-Time Systems
- Parallel Form Realization of Continuous-Time Systems
- Causality and Paley Wiener Criterion for Physical Realization
- Discrete Fourier Transform
- Discrete-Time Fourier Transform
- Properties of Discrete Time Fourier Transform
- Linearity, Periodicity, and Symmetry Properties of Discrete-Time Fourier Transform
- Time Shifting and Frequency Shifting Properties of Discrete Time Fourier Transform
- Inverse Discrete-Time Fourier Transform
- Time Convolution and Frequency Convolution Properties of Discrete-Time Fourier Transform
- Differentiation in Frequency Domain Property of Discrete Time Fourier Transform
- Parseval’s Power Theorem
- Miscellaneous Concepts
- What is Mean Square Error?
- What is Fourier Spectrum?
- Region of Convergence
- Hilbert Transform
- Properties of Hilbert Transform
- Symmetric Impulse Response of Linear-Phase System
- Filter Characteristics of Linear Systems
- Characteristics of an Ideal Filter (LPF, HPF, BPF, and BRF)
- Zero Order Hold and its Transfer Function
- What is Ideal Reconstruction Filter?
- What is the Frequency Response of Discrete Time Systems?
- Basic Elements to Construct the Block Diagram of Continuous Time Systems
- BIBO Stability Criterion
- BIBO Stability of Discrete-Time Systems
- Distortion Less Transmission
- Distortionless Transmission through a System
- Rayleigh’s Energy Theorem
Z-Transform and ROC of Finite Duration Sequences
The sequences having a finite number of samples are called the finite duration sequences. The finite duration sequences may be of following three types viz −
- Right-Hand Sequences
- Left-Hand Sequences
- Two-Sided Sequences
Right-Hand Sequence
A sequence for which x(n) = 0 for n < n0 where n0 may be positive or negative but finite, is called the Right Hand Sequence. If n0 ≥ 0, the resulting sequence is a causal sequence. The ROC of a causal sequence is the entire z-plane except at z = 0.
Numerical Example
Find the ROC and Z-Transform of the causal sequence.
$$\mathrm{x(n) \:=\: \{1,\:0,\:â4,\:6,\:5,\:4\: \uparrow \}}$$
Solution
The given sequence is a right-hand sequence. The values of the given sequence are â
$$\mathrm{x(0) \:=\:1,\:x(1)\:=\:0,\:x(2)\:=\:â4,\:x(3)\:=\:6,\:x(4)\:=\:5,\:x(5)\:=\:4}$$
The Z-transform of a sequence is given by,
$$\mathrm{X(z) \:=\: \sum_{n=-\infty}^{\infty}\:x(n)z^{-n}}$$
Thus, for the given values of the sequence, we get,
$$\mathrm{Z[x(n)] \:=\: X(z)}$$
$$\mathrm{= \:x(0) \:+\:x(1)z^{â1}\:+\:x(2)z^{â2}\:+\:x(3)z^{â3}\:+\:x(4)z^{â4}\:+\:x(5)z^{â5}}$$
$$\mathrm{\therefore \:X(z)\:=\:1\:â\:4z^{â2}\:+\:6z^{â3}\:+\:5z^{â4}\:+\:4z^{â5}}$$
The given sequence is a causal sequence, thus X(z) converges for all values of z except at z = 0, i.e., the ROC is entire z-plane except at z = 0.
Left-Hand Sequence
A sequence for which x(n) = 0 for n ≥ n0, where n0 is positive or negative but finite, is called the left-hand sequence. When n0 ≤ 0, then the resulting sequence is an anti-causal sequence. The ROC of an anti-causal sequence is the entire z-plane except at z = ∞.
Numerical Example
Find the Z-transform and ROC of the anti-causal sequence.
$$\mathrm{x(n) \:=\: \{1,\:â2,\:â1,\:2,\:3,\:4\: \uparrow \}}$$
Solution
The given sequence is a left-hand sequence. The values of the given sequence are â
$$\mathrm{x(â5)\:=\:1,\:x(â4)\:=\:â2,\:x(â3)\:=\:â1,\:x(â2)\:=\:2,\:x(â1)\:=\:3,\:x(0)\:=\:4}$$
As the Z-transform is given by,
$$\mathrm{X(z) \:=\: \sum_{n=-\infty}^{\infty}\:x(n)z^{-n}}$$
Hence, for the given sequence values, the Z-transform is,
$$\mathrm{Z[x(n)]\:=\:X(z)}$$
$$\mathrm{=\:x(â5)z^5\:+\:x(â4)z^4\:+\:x(â3)z^3\:+\:x(â2)z^2\:+\:x(â1)z\:+\:x(0)}$$
$$\mathrm{\therefore\:X(z)\:=\:z^5\:â\:2z^4\:â\:z^3\:+\:2z^2\:+\:3z\:+\:4}$$
As the given sequence is an anti-causal sequence, therefore the X(z) converses for all values of z except at ð§ = â, i.e., the ROC is the entire z-plane except at z = â.
Two-Sided Sequence
A two-sided sequence is the one which exists on both the left and right sides. The ROC of a two-sided sequence is the entire z-plane except at z = 0 and z = ∞.
Numerical Example
Find the Z-transform and ROC of the two-sided sequence.
$$\mathrm{x(n) \:=\:\{5,\:1,\:2,\:3,\:4,\:0,\:5,\: \uparrow \}}$$
Solution
The values of the given two-sided sequence are â
$$\mathrm{x(â3) \:=\:5,\:x(â2)\:=\:1,\:x(â1)\:=\:2,\:x(0)\:=\:3,\:x(1)\:=\:4,\:x(2)\:=\:0,\:x(3)\:=\:5}$$
The Z-transform is given by,
$$\mathrm{X(z) \:=\: \sum_{n=-\infty}^{\infty}\:x(n)z^{-n}}$$
For the sequence values, the Z-transform is,
$$\mathrm{X(z) \:=\:x(â3)z^3\:+\:x(â2)z^2\:+\:x(â1)z\:+\:x(0)\:+\:x(1)z^{â1}\:+\:x(2)z^{â2}\:+\:x(3)z^{â3}}$$
$$\mathrm{\therefore\:\:X(z)\:=\:5z^3\:+\:z^2\:+\:2z\:+\:3\:+\:4z^{-1}\:+\:5z^{â3}}$$
The ROC is the entire z-plane except at z = 0 and z = ∞.