Time Integration Property of Fourier Transform



Fourier Transform

For a continuous-time function x(t), the Fourier transform of x(t) can be defined as,

$$\mathrm{X(\omega) \:=\: \int_{-\infty }^{\infty}x(t)\:e^{-jwt}\:dt}$$

And the inverse Fourier transform is defined as,

$$\mathrm{x(t) \:=\: \frac{1}{2\pi}\int_{-\infty }^{\infty}X(\omega)\:e^{jwt}\:d\omega}$$

Time Integration Property of Fourier Transform

Statement

The time integration property of continuous-time Fourier transform states that the integration of a function x(t) in time domain is equivalent to the division of its Fourier transform by a factor jω in frequency domain. Therefore, if,

$$\mathrm{x(t)\overset{FT}{\leftrightarrow}X(\omega )}$$

Then, according to the time integration property

$$\mathrm{\int_{-\infty }^{t}x(\tau )\:\overset{FT}{\leftrightarrow}\frac{X(\omega )}{j\omega };\:\:(if\:X(0)\:=\:0)}$$

Proof

When X(0)=0; then the time integration property of CTFT can be proved by using integration by parts.

Therefore, from the definition of inverse Fourier transform, we have,

$$\mathrm{x(t)\:=\:\frac{1}{2\pi}\int_{-\infty }^{\infty}X(\omega)\:e^{jwt}\:d\omega}$$

Replacing t by a variable τ in the above equation, we get,

$$\mathrm{x(\tau)\:=\:\frac{1}{2\pi}\int_{-\infty }^{\infty}X(\omega)\:e^{jwt}\:d\omega}$$

Taking time integration on both sides over $(-\infty)$ to (t), we get,

$$\mathrm{\int_{-\infty }^{t}x(\tau )\:d\tau\:=\:\int_{-\infty}^{t}\left[ \frac{1} {2\pi}\int_{-\infty}^{\infty }X(\omega)\: e^{j\omega\tau }\:d\tau \right]d\omega}$$

By interchanging the order of integration in RHS of the above equation, we get,

$$\mathrm{\int_{-\infty }^{t}x(\tau )\:d\tau\:=\:\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega )\left [\int_{-\infty}^{t} e^{j\omega\tau}d\tau\right]d\omega}$$

$$\mathrm{\Rightarrow\:\int_{-\infty }^{t}x(\tau )\:d\tau\:=\:\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega )\left [ \frac{e^{j\omega\tau}}{j\omega}\right]^t_{-\infty}\:d\omega}$$

$$\mathrm{\Rightarrow\:\int_{-\infty }^{t}x(\tau )\:d\tau\:=\:\frac{1}{2\pi}\int_{-\infty}^{\infty}\left [\frac{X(\omega)}{j\omega} \right]e^{j\omega t} d\omega \:=\: F^{-1}\left [ \frac{X(\omega)}{j\omega} \right ]}$$

$$\mathrm{\therefore\: F\left [\int_{-\infty }^{t}x(\tau )\:d\tau \right ]\:=\:\frac{X(\omega)}{j\omega}}$$

Or, it can also be represented as,

$$\mathrm{\int_{-\infty }^{t}x(\tau )\:d\tau\overset{FT}{\leftrightarrow}\frac{X(\omega)}{j\omega}}$$

Note

When $X(0)\:=\:0;$ then, the function x(t) is not an energy function and hence the Fourier transform of $[\int_{-\infty }^{t}x(\tau )\:d\tau]$ includes an impulse function, i.e.,

$$\mathrm{F\left [\int_{-\infty }^{t}x(\tau )\:d\tau \right ]\:=\:\frac{X(\omega)}{j\omega}\:+\:\pi\:X(0)\delta(\omega)}$$

Advertisements