Z-Transform of Sine and Cosine Signals



Z-Transform

The Z-transform (ZT) is a mathematical tool which is used to convert the difference equations in time domain into the algebraic equations in z-domain.

Mathematically, if x(n) is a discrete-time signal or sequence, then its bilateral or two-sided Z-transform is defined as −

$$\mathrm{Z[x(n)]\:=\:X(z)\:=\:\sum_{n=-\infty}^{\infty}\: x(n) z^{-n}}$$

Where, z is a complex variable.

Also, the unilateral or one-sided z-transform is defined as −

$$\mathrm{Z[x(n)]\:=\:X(z)\:=\:\sum_{n=0}^{\infty}\: x(n) z^{-n}}$$

Z-Transform of Causal Sine Sequence

The causal sine sequence is defined as,

$$\mathrm{x(n)\:=\:sin\:\omega n\:u(n)\:=\:\begin{cases}sin \:\omega n \:\:\text{for }\: n\:\geq\:0 \\\\ 0\:\:\text{for } n\:\lt\:0\end{cases}}$$

Therefore, the Z-transform of the sine sequence is obtained as follows −

$$\mathrm{Z[x(n)]\:=\:X(z)\:=\:Z[sin\omega n\:u(n)]}$$

$$\mathrm{\Rightarrow\:X(z)\:=\:\sum_{n=0}^{\infty}\:sin(\omega n)\:z^{-n}}$$

$$\mathrm{\because\:sin\:\omega n\:=\:\frac{e^{j \omega n} \:-\: e^{-j \omega n}}{2j}}$$

$$\mathrm{\therefore\:X(z)\:=\:\sum_{n=0}^{\infty} \left( \frac{e^{j \omega n} \:-\: e^{-j \omega n}}{2j} \right) z^{-n}}$$

$$\mathrm{\Rightarrow\: X(z) \:=\: \frac{1}{2j} \sum_{n=0}^{\infty} \:\left( e^{j \omega n} \:-\: e^{-j \omega n} \right) z^{-n}}$$

$$\mathrm{= \:\frac{1}{2j} \left[ \sum_{n=0}^{\infty} \left( e^{j \omega} z^{-1} \right)^n \:-\: \sum_{n=0}^{\infty} \left( e^{-j \omega} z^{-1} \right)^n \right]}$$

$$\mathrm{\Rightarrow\: X(z) \:=\: \frac{1}{2j} \left[ \frac{1}{(1 \:-\: e^{j \omega} z^{-1})} \:-\: \frac{1}{(1 \:-\: e^{-j \omega} z^{-1})} \right]}$$

$$\mathrm{\Rightarrow\: X(z) \:=\: \frac{1}{2j} \left[ \frac{z}{\left( z \:-\: e^{j \omega} \right)} \:- \:\frac{z}{\left( z \:-\: e^{-j \omega} \right)} \right] \:=\: \frac{1}{2j} \left[ \frac{z\left( z\:-\: e^{-j \omega} \right)\:-\:z \left( z \:-\: e^{j \omega} \right)}{\left( z\:-\: e^{-j \omega} \right)\left( z \:-\: e^{j \omega} \right)} \right]}$$

$$\mathrm{\Rightarrow\: X(z) \:=\: \frac{1}{2j} \left[ \frac{z\left( e^{j \omega} \:-\: e^{-j \omega} \right)}{z^2 \:-\: z \left( e^{j \omega} \:+\: e^{-j \omega} \right) \:+\: 1} \right]}$$

$$\mathrm{\because\: \left(\frac{e^{j \omega} \:-\: e^{-j \omega}}{2}\right) \:=\: \sin(\omega) \quad \text{and} \quad \left(\frac{e^{j \omega} \:+\:e^{-j \omega}}{2}\right) \:=\: \cos(\omega)}$$

$$\mathrm{\therefore\: X(z) \:=\: \frac{z \:\sin(\omega)}{z^2 \:-\: 2z\: \cos(\omega) \:+\: 1}}$$

This series converges for |z| > 1. Therefore, the ROC of the Z-transform of the causal sine sequence is |z| > 1. Hence, the Z-transform of a sine function along with its ROC is represented as,

$$\mathrm{\sin(\omega n) u(n)\:\overset{ZT}\longleftrightarrow\: \left(\frac{z \sin(\omega)}{z^2 \:-\: 2z\: \cos(\omega) \:+\: 1}\right); \quad \text{ROC } \:\rightarrow\: |z|\: \gt\: 1}$$

Z-Transform of Causal Cosine Sequence

The causal cosine sequence is defined as −

$$\mathrm{x(n) \:=\: \cos \omega\: nu(n) \:=\: \begin{cases}\cos \omega\:n\:\: \text{for } \:n \:\geq\: 0 \\\\ 0\:\: \text{for }\: n\:\lt\:0 \end{cases}}$$

Thus, the Z-transform of the cosine sequence is obtained as follows −

$$\mathrm{Z[x(n)]\:=\:X(z)\:=\:Z[cosin\:\omega\:n\:u(n)]}$$

$$\mathrm{\Rightarrow\:X(z)\:=\:\sum_{n=0}^{\infty}\:cos\:(\omega n)\:z^{-n}}$$

$$\mathrm{\because\:cos\:\omega n\:=\:\frac{e^{j\omega n}\:+\:e^{-j\omega\:n}}{2}}$$

$$\mathrm{\therefore\:X(z)\:=\:\sum_{n=0}^{\infty}\:\left( \frac{e^{j\omega n}\:+\:e^{-j\omega n}}{2}\right)z^{-n}}$$

$$\mathrm{\Rightarrow\:X(z)\:=\:\frac{1}{2}\:\sum_{n=0}^{\infty}\:(e^{j\omega n}\:+\:e^{-j\omega n})z^{-n}\:=\:\frac{1}{2}\left[\sum_{n=0}^{\infty}\:(e^{j\omega}z^{-1})^n \:+\:\sum_{n=0}^{\infty}\:(e^{-j\omega}z^{-1})^n\right]}$$

$$\mathrm{\Rightarrow\:X(z)\:=\:\frac{1}{2}\left[\frac{1}{(1\:-\:e^{j\omega}\:Z^{-1})}\:+\:\frac{1}{(1\:-\:e^{-j\omega}\:z^{-1})}\right]}$$

$$\mathrm{\Rightarrow\:X(z)\:=\:\frac{1}{2}\left[\frac{z}{(z\:-\:e^{j\omega})}\:+\:\frac{z}{(z\:-\:e^{-j\omega})}\right]\:=\:\frac{1}{2}\left[\frac{z(z\:-\:e^{-j\omega})\:+\:z(z\:-\:e^{j\omega})}{(z\:-\:e^{j\omega})(z\:-\:e^{-j\omega})}\right]}$$

$$\mathrm{\Rightarrow\:X(z)\:=\:\frac{1}{2}\left\{\frac{z[2z\:-\:(e^{j\omega\:-\:e^{-j\omega}})]}{z^2\:-\:z(e^{j\omega}\:+\:e^{-j\omega})\:+\:1}\right\}}$$

$$\mathrm{\therefore\:X(z)\:=\:\frac{z(z\:-\:cos\omega)}{z^2\:-\:2z\:cos\omega\:+\:1}}$$

This series also converges for |z| > 1. Therefore, the ROC of the Z-transform of the causal cosine sequence is |z| > 1. Hence, the Z-transform of a cosine function along with its ROC is represented as,

$$\mathrm{cos\omega n\:u(n)\:\overset{ZT}\longleftrightarrow\:\left[\frac{z(z\:-\:cos\omega)}{z^2\:-\:2z\:cos\omega\:+\:1}\right];\:\:\text{ROC }\:\rightarrow\:|z|\:\gt\:1}$$

Advertisements