Properties of Discrete-Time Fourier Transform



Discrete Time Fourier Transform

The discrete time Fourier transform is a mathematical tool which is used to convert a discrete time sequence into the frequency domain. Therefore, the Fourier transform of a discrete time signal or sequence is called the discrete time Fourier transform (DTFT).

Mathematically, if x(n) is a discrete time sequence, then the discrete time Fourier transform of the sequence is defined as −

$$\mathrm{F[x(n)] \:=\: X(\omega) \:=\: \sum_{n=-\infty}^{\infty}\: x(n) e^{-j \omega n}}$$

Properties of Discrete-Time Fourier Transform

Following table gives the important properties of the discrete-time Fourier transform −

Property Discrete-Time Sequence DTFT
Notation $\mathrm{x(n)}$ $\mathrm{X(\omega)}$
$\mathrm{x_1(n)}$ $\mathrm{X_1(\omega)}$
$\mathrm{x_2(n)}$ $\mathrm{X_2(\omega)}$
Linearity $\mathrm{ax_1(n)\:+\:bx_2(n)}$ $\mathrm{aX_1(\omega) \:+\: bX_2(\omega)}$
Time Shifting $\mathrm{x(n\:−\:k)}$ $\mathrm{e^{−jωk}X(\omega)}$
Frequency Shifting $\mathrm{x(n)e^{j\omega_0 n}}$ $\mathrm{X(\omega \:−\:\omega_0)}$
Time Reversal $\mathrm{x(−n)}$ $\mathrm{X(−\omega)}$
Frequency Differentiation $\mathrm{nx(n)}$ $\mathrm{j\frac{d}{d\omega}X(\omega)}$
Time Convolution $\mathrm{x_1(n)\:\cdot\:x_2(n)}$ $\mathrm{X_1(\omega)X_2(\omega)}$
Frequency Convolution (Multiplication in time domain) $\mathrm{x_1(n)x_2(n)}$ $\mathrm{X_1(\omega)\:\cdot\:X_2(\omega)}$
Correlation $\mathrm{R_{x_1x_2}(l)}$ $\mathrm{X_1(\omega)X_2(−\omega)}$
Modulation Property $\mathrm{x(n)cos\omega_0n}$ $\mathrm{\frac{1}{2}[X(\omega\:+\:\omega_0)\:+\:X(\omega\:−\:\omega_0)]}$
Parseval’s Relation $\mathrm{\sum_{n=-\infty}^{\infty}\: |x(n)|^2}$ $\mathrm{\frac{1}{2\pi} \int_{-\pi}^{\pi}\: |X(\omega)|^2 \: d\omega}$
Conjugation $\mathrm{x^*(n)}$ $\mathrm{X(−\omega)}$
$\mathrm{x^*(−n)}$ $\mathrm{X^*(\omega)}$
Symmetry Properties $\mathrm{x_R(n)}$ $\mathrm{X_e(\omega)}$
$\mathrm{jx_I(n)}$ $\mathrm{X_0(\omega)}$
$\mathrm{x_e(n)}$ $\mathrm{X_R(\omega)}$
$\mathrm{x_0(n)}$ $\mathrm{jX_I(ω)}$
Advertisements