Table of Fourier Transform Pairs



Fourier Transform

Fourier transform is a transformation technique that transforms signals from the continuous-time domain to the corresponding frequency domain and vice-versa.

The Fourier transform of a continuous-time function $x(t)$ is defined as,

$$\mathrm{X(\omega) \:=\: \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt\:\:\dotso\:(1)}$$

Inverse Fourier Transform

The inverse Fourier transform of a continuous-time function is defined as,

$$\mathrm{x(t) \:=\: \frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)\:e^{j\omega t}d\omega\:\:\dotso\:(2)}$$

Equations (1) and (2) for $X(\omega)$ and $x(t)$ are known as Fourier transform pair and can be represented as −

$$\mathrm{X(\omega) \:=\: F[x(t)]}$$

And

$$\mathrm{x(t) \:=\: F^{-1}[X(\omega)]}$$

Table of Fourier Transform Pairs

Function,x(t) Fourier Transform, X(ω)
$\mathrm{\delta(t)}$ 1
$\mathrm{\delta(t \:-\: t_{0})}$ $\mathrm{e^{-j\: \omega\: t_{0}}}$
1 $\mathrm{2\pi \delta(\omega)}$
u(t) $\mathrm{\pi\delta(\omega)\:+\:\frac{1}{j\omega}}$
$\mathrm{\sum_{n= -\infty}^{\infty}\delta(t \:-\: nT)}$ $\mathrm{\omega_{0}\sum_{n= -\infty}^{\infty}\:\delta(\omega \:-\: n\omega_{0});\:\:\left(\omega_{0} \:=\: \frac{2\pi}{T} \right)}$
sgn(t) $\mathrm{\frac{2}{j\omega}}$
$\mathrm{e^{j\omega_{0}t}}$ $\mathrm{2\pi\delta(\omega \:-\: \omega_{0})}$
$\mathrm{cos\:\omega_{0}t}$ $\mathrm{\pi[\delta(\omega \:-\: \omega_{0}) \:+\: \delta(\omega \:+\: \omega_{0})]}$
$\mathrm{sin\:\omega_{0}t}$ $\mathrm{-j\pi[\delta(\omega \:-\: \omega_{0}) \:-\: \delta(\omega \:+\: \omega_{0})]}$
$\mathrm{e^{-at}u(t);\:\: a \:\gt \:0}$ $\mathrm{\frac{1}{a \:+\: j\omega}}$
$\mathrm{t\:e^{at}u(t);\:\:a \: \gt \:0}$ $\mathrm{\frac{1}{(a \:+\: j\omega)^{2}}}$
$\mathrm{e^{-|at|};\:\:a \:\gt\:0}$ $\mathrm{\frac{2a}{a^{2} \:+\: \omega^{2}}}$
$\mathrm{e^{-|t|}}$ $\mathrm{\frac{2}{1 \:+\: \omega^{2}}}$
$\mathrm{\frac{1}{\pi t}}$ $\mathrm{-j\:sgn(\omega)}$
$\mathrm{\frac{1}{a^{2} \:+\: t^{2}}}$ $\mathrm{\frac{\pi}{a}e^{-a|\omega|}}$
$\mathrm{\Pi \left(\frac{t}{\tau}\right)}$ $\mathrm{\tau\:sin c\left(\frac{\omega \tau}{2}\right)}$
$\mathrm{\Delta\left(\frac{t}{\tau}\right)}$ $\mathrm{\frac{\tau}{2}sin C^{2}\left(\frac{\omega \tau}{4}\right)}$
$\mathrm{\frac{sin\:at}{\pi t}}$ $\mathrm{P_{a}(\omega) \:=\: \begin{cases} 1 \:\: for\:|\omega|\:\lt\: a \\\\0 \:\: for\:|\omega|\: \gt\: a \end{cases}}$
$\mathrm{cos\:\omega_{0}t\:u(t)}$ $\mathrm{\frac{\pi}{2}[\delta(\omega \:-\: \omega_{0}) \:+\: \delta(\omega \:+\: \omega_{0})] \:+\:\left[ \frac{j\omega}{(j\omega)^{2} \:+\: \omega_{0}^{2}} \right]}$
$\mathrm{sin\:\omega_{0}t\:u(t)}$ $\mathrm{-j\frac{\pi}{2}[\delta(\omega \:-\: \omega_{0}) \:-\: \delta(\omega \:+\: \omega_{0})] \:+\: \left [\frac{\omega_{0}}{(j\omega)^{2} \:+\: \omega_{0}^{2}} \right ]}$
Advertisements