Common Z-Transform Pairs



Z-Transform

Z−transform is a mathematical tool which is used to convert the difference equations in time domain into the algebraic equations in the frequency domain.

Mathematically, if x(n) is a discrete−time sequence, then its Z−transform is defined as −

$$\mathrm{X(z) \:=\: \sum_{n=−\infty}^{\infty}\: x(n) z^{−n} \:\:\dotso\:(1)}$$

Where, z is a complex variable. The z−transform defined in eq. (1) is called bilateral or two−sided z−transform.

The unilateral or one−sided z−transform is defined as −

$$\mathrm{X(z) \:=\: \sum_{n\:=\:0}^{\infty}\: x(n) z^{−n} \:\:\dotso\:(2)}$$

Common Z-Transform Pairs

The following table gives a number of unilateral and bilateral z−transforms along with their region of convergence (ROC) −

Discrete-Time Sequence, x(n) Z-Transform, X(z) ROC
$\mathrm{\delta(n)}$ $\mathrm{1}$ $\mathrm{All z}$
$\mathrm{u(n)}$ $\mathrm{\frac{z}{z−1}\:=\:\frac{1}{1−z^{−1}}}$ $\mathrm{|z|\:\gt\:1}$
$\mathrm{u(−n)}$ $\mathrm{\frac{1}{1−z}}$ $\mathrm{|z|\:\lt\:1}$
$\mathrm{u(−n−1)}$ $\mathrm{−\frac{z}{(z−1)}}$ $\mathrm{|z| \:\lt\:1}$
$\mathrm{u(−n−2)}$ $\mathrm{−\frac{z^2}{(z−1)}}$ $\mathrm{|z| \:\lt\: 1}$
$\mathrm{u(−n−k)}$ $\mathrm{−\frac{z^k}{(z−1)}}$ $\mathrm{|z| \:\lt\: 1}$
$\mathrm{\delta(n−k)}$ $\mathrm{z^{−k}}$

If k > 0, all z except at z = 0

If k < 0, all z except at z = &infty;

$\mathrm{\frac{1}{n}\:;\:n \:\gt\:0 }$ $\mathrm{−ln(1\:−\:z^{−1})}$ $\mathrm{|z|\:\gt\:1}$
$\mathrm{a^{|n|}\:;\:\:\text{for all n}}$ $\mathrm{\frac{(1\:−\:a^2)}{[(1\:−\:az)(1\:−\:az^{−1})]}}$ $\mathrm{|a| \:\lt\:|z|\:\lt\:|\frac{1}{a}|}$
$\mathrm{a^{n}u(n)}$ $\mathrm{\frac{z}{z\:−\:a}}$ $\mathrm{|z| \:\gt\: |a|}$
$\mathrm{−a^{n}u(−n)}$ $\mathrm{\frac{a}{(z−a)}}$ $\mathrm{|z| \:\lt\: |a|}$
$\mathrm{−a^{n}u(−n−1)}$ $\mathrm{\frac{z}{(z−a)}}$ $\mathrm{|z| \:\lt\: |a|}$
$\mathrm{nu(n)}$ $\mathrm{\frac{z}{(z−1)^2}}$ $\mathrm{|z| \:\gt\: 1}$
$\mathrm{na^{n}u(n)}$ $\mathrm{\frac{az}{(z−a)^2}}$ $\mathrm{|z| \:\gt\: |a|}$
$\mathrm{−nu(−n−1)}$ $\mathrm{\frac{z}{(z−1)^2}}$ $\mathrm{|z|\:\lt\:1}$
$\mathrm{−na^n u(−n−1)}$ $\mathrm{\frac{az}{(z−a)^2}}$ $\mathrm{|z|\:\lt\:|a|}$
$\mathrm{e^{−j\omega n}u(n)}$ $\mathrm{\frac{z}{(z−e^{−j\omega})}}$ $\mathrm{|z| \:\gt\: 1}$
$\mathrm{cos\:\omega\:nu(n)}$ $\mathrm{\frac{z(z\:−\:cos\omega)}{z^2\:−\:2z\:cos\omega\:+\:1}}$ $\mathrm{|z| \:\gt\: 1}$
$\mathrm{sin\:\omega\:nu(n)}$ $\mathrm{\frac{z\:sin\:\omega}{z^2\:−\:2z\:cos\:\omega\:+\:1}}$ $\mathrm{|z|\:\gt\:1}$
$\mathrm{a^n\:cos\:\omega\:nu(n)}$ $\mathrm{\frac{z(z\:−\:acos\:\omega)}{z^2\:−\:2az\:cos\omega\:+\:a^2}}$ $\mathrm{|z|\:\gt\:|a|}$
$\mathrm{a^n\:sin\omega\:nu(n)}$ $\mathrm{\frac{az\:sin\omega}{z^2\:−\:2az\:cos\omega\:+\:a^2}}$ $\mathrm{|z| \:\gt\: |a|}$
$\mathrm{(n\:+\:1)a^nu(n)}$ $\mathrm{\frac{Z^2}{(z−a)^2}}$ $\mathrm{|z|\:\gt\:|a|}$
$\mathrm{\frac{(n+1)(n+2)}{2!}\:a^n u(n)}$ $\mathrm{\frac{z^3}{(z\:−\:a)^3}}$ $\mathrm{|z| \:\gt\:|a|}$
$\mathrm{\frac{n(n−1)}{2!}\:a^{(n−2)}u(n)}$ $\mathrm{\frac{z}{(z−a)^3}}$ $\mathrm{|z| \:>\: |a|}$
$\mathrm{\frac{n(n−1)\:\cdots\:[n−(k−2)]}{(k−1)!}\:a^{(n−k+1)}u(n)}$ $\mathrm{\frac{z}{(z−a)^k}}$ $\mathrm{|z|\:\gt\:|a|}$
Advertisements