- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
What is Energy Spectral Density?
Energy Spectral Density
The distribution of the energy of a signal in the frequency domain is known as energy spectral density (ESD) or energy density (ED) or energy density spectrum. The ESD function is denoted by $\mathrm{\mathit{\psi \left ( \omega \right )}}$ and is given by,
$$\mathrm{\mathit{\psi \left ( \omega \right )\mathrm{=}\left|X\left ( \omega \right ) \right|^{\mathrm{2}}}}$$
For an energy signal, the total area under the energy spectral density curve plotted as the function of frequency is equal to the total energy of the signal.
Explanation
Consider a linear system having $\mathrm{\mathit{x\left ( \mathit{t} \right )}}$ and $\mathrm{\mathit{y\left ( \mathit{t} \right )}}$ as input and output respectively. Then, the Fourier transform of $\mathrm{\mathit{x\left ( \mathit{t} \right )}}$ and $\mathrm{\mathit{y\left ( \mathit{t} \right )}}$ be
$$\mathrm{\mathit{x\left ( t \right )\overset{FT}{\leftrightarrow}X\left ( \omega \right )}}$$
$$\mathrm{\mathit{y\left ( t \right )\overset{FT}{\leftrightarrow}Y\left ( \omega \right )}}$$
And the transfer function of the system is π»(π). Then, we get,
$$\mathrm{\mathit{Y\left ( \omega \right )\mathrm{=}H\left ( \omega \right )\cdot X\left ( \omega \right )\; \; \cdot \cdot \cdot \left ( \mathrm{1} \right )}}$$
Therefore, the ESD of the input and output signals is given by,
ESD of input function, $\mathrm{\mathit{\psi_{x} \left ( \omega \right )\mathrm{=}\left|X\left ( \omega \right ) \right|^{\mathrm{2}}\; \; \cdot \cdot \cdot \left ( \mathrm{2} \right )}}$
ESD of output function, $\mathrm{\mathit{\psi_{y} \left ( \omega \right )\mathrm{=}\left|Y\left ( \omega \right ) \right|^{\mathrm{2}}\; \; \cdot \cdot \cdot \left ( \mathrm{3} \right )}}$
From equations (1), (2) & (3), we have,
$$\mathrm{\mathit{\psi_{y} \left ( \omega \right )\mathrm{=}\left|Y\left ( \omega \right ) \right|^{\mathrm{2}}\mathrm{=}\left|H\left ( \omega \right )\cdot X\left ( \omega \right ) \right|^{\mathrm{2}}}}$$
$$\mathrm{\mathit{\Rightarrow \psi_{y} \left ( \omega \right )\mathrm{=}\left|H\left ( \omega \right )\right|^{\mathrm{2}}\cdot \left|X\left ( \omega \right ) \right|^{\mathrm{2}}\mathrm{=}\left| H\left ( \omega \right )\right|^{\mathrm{2}}\cdot \psi _{x}\left ( \omega \right )}}$$
$$\mathrm{\mathit{\therefore \psi_{y} \left ( \omega \right )\mathrm{=}\left| H\left ( \omega \right )\right|^{\mathrm{2}} \psi _{x}\left ( \omega \right )\; \; \cdot \cdot \cdot \left ( \mathrm{4} \right )}}$$
Hence, it is clear from eq. (4) that the ESD of the output function of a linear system is the product of the square of the magnitude of the system transfer function and the ESD of the input signal.
Now, the energy of the output signal is,
$$\mathrm{\mathit{E_{y}\mathrm{=}\int_{-\infty }^{\infty }\psi _{y}\left ( f \right )df\; \; \cdot \cdot \cdot \left ( \mathrm{5} \right ) }}$$
$$\mathrm{\mathit{\Rightarrow E_{y}\mathrm{=}\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }\psi _{y}\left ( \omega \right )d\omega\; \; \; \left ( \because f\mathrm{=} \frac{\omega }{\mathrm{2}\pi } \right )}}$$
$$\mathrm{\mathit{\Rightarrow E_{y}\mathrm{=}\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }\left|H\left ( \omega \right ) \right|^{\mathrm{2}}\psi _{x}\left ( \omega \right )d\omega\mathrm{=}\frac{\mathrm{2}}{\mathrm{2}\pi }\int_{\mathrm{0} }^{\infty }\left|H\left ( \omega \right ) \right|^{\mathrm{2}}\psi _{x}\left ( \omega \right )d\omega }}$$
$$\mathrm{\mathit{\Rightarrow E_{y}\mathrm{=}\frac{\mathrm{1}}{\pi }\int_{\mathrm{0} }^{\infty }\left|H\left ( \omega \right ) \right|^{\mathrm{2}}\psi _{x}\left ( \omega \right )d\omega }}$$
If the given linear system is an ideal low-pass filter with lower and upper cutoff frequencies f1 and f2 respectively. Then the magnitude of the system transfer function is
$$\mathrm{\mathit{\left|H\left ( \omega \right ) \right|\mathrm{=}\mathrm{1};\; \; \; \mathrm{for \; }f_{\mathrm{1}}< f< f_{\mathrm{2}}}}$$
Therefore, the energy of the output signal is,
$$\mathrm{\mathit{E_{y}\mathrm{=}\frac{\mathrm{1}}{\pi }\int_{f_{\mathrm{1}}}^{f_{\mathrm{2}}}\psi _{x}\left (\omega \right )d\omega \mathrm{=}\frac{\mathrm{1}}{\pi }\int_{f_{\mathrm{1}}}^{f_{\mathrm{2}}}\psi _{x}\left ( \mathrm{2} \pi f\right )d\left ( \mathrm{2}\pi f \right )}}$$
$$\mathrm{\Rightarrow \mathit{E_{y}\mathrm{=}\mathrm{2}\int_{f_{\mathrm{1}}}^{f_{\mathrm{2}}}\psi _{x}\left (f \right )df\; \; \;\cdot \cdot \cdot \left ( \mathrm{6} \right ) }}$$
Equation (6) gives the energy of the output signal of a linear system in terms of ESD of the input signal.
Properties of Energy Spectral Density
The properties of energy spectral density (ESD) are given as follows −
Property 1 – If $\mathrm{\mathit{x\left ( \mathit{t} \right )}}$ is the input signal to a linear time-invariant system with impulse response h(t), then the energy spectral density (ESD) of the input and output signals are related as −
$$\mathrm{\mathit{\psi _{y}\left ( \omega \right )\mathrm{=}\left|H\left ( \omega \right ) \right|^{\mathrm{2}}\psi _{x}\left ( \omega \right )}}$$
Property 2 – The total area under the energy spectral density curve is equal to the total energy of the signal, i.e.,
$$\mathrm{\mathit{E\mathrm{=}\int_{-\infty }^{\infty }\psi \left ( f \right )df\mathrm{=}\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }\psi \left ( \omega \right )d\omega }}$$
Property 3 – The energy spectral density (ESD) function $\mathrm{\mathit{\psi \left ( \omega \right )}}$ and the autocorrelation function $\mathrm{\mathit{R\left ( \tau \right )}}$ of an energy signal form a Fourier transform pair, i.e.,
$$\mathrm{\mathit{R\left ( \tau \right )\overset{FT}{\leftrightarrow}\psi \left ( \omega \right )}}$$
- Related Articles
- What is Power Spectral Density?
- What is Power Spectral Density & itβs benefits?
- Signals and Systems β Energy Spectral Density (ESD) and Autocorrelation Function
- Plotting power spectral density in Matplotlib
- Power Spectral Density (PSD) and Autocorrelation Function
- What is Density?
- What is the density?
- Spectral Series
- What is density of water?
- (a) Define density. What is the SI unit of density ?(b) Define relative density. What is the SI unit of relative density ?(c) The density of turpentine is $840\ kg/m^3$. What will be its relative density ? $(Density\ of\ water=1000\ kg/m^3)$
- (a) Define density. What is the SI unit of density?(b) Define relative density. What s the SI unit of relative density?
- What is Energy?
- What is the relative density of wood?
- What is the relative density of water ?
- (a) What is the difference between the density and relative density of a substance ?(b) If the relative density of a substance is 7.1, what will be its density in SI units ?
