- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Time Shifting, Time Reversal, and Time Scaling Properties of Continuous-Time Fourier Series
Fourier Series
If $x(t)$ is a periodic function with period $T$, then the continuous-time exponential Fourier series of the function is defined as,
$$\mathrm{x(t)=\sum_{n=−\infty}^{\infty}C_{n}e^{jn\omega_{0} t}… (1)}$$
Where, $C_{n}$ is the exponential Fourier series coefficient, which is given by,
$$\mathrm{C_{n}=\frac{1}{T}\int_{t_{0}}^{t_{0}+T}x(t)e^{-jn\omega_{0} t}dt… (2)}$$
Time Shifting Property of Fourier Series
Let $x(t)$ is a periodic function with time period $T$ and with Fourier series coefficient $C_{n}$. Then, if
$$\mathrm{x(t)\overset{FS}{\leftrightarrow}C_{n}}$$
Then, the time shifting property of continuous-time Fourier series states that
$$\mathrm{x(t-t_{0})\overset{FS}{\leftrightarrow}e^{-jn\omega_{0} t_{0}}C_{n}}$$
Proof
From the definition of continuous-time Fourier series, we get,
$$\mathrm{x(t)=\sum_{n=−\infty}^{\infty}C_{n}e^{jn\omega_{0} t}…(3)}$$
Replacing $t$ by $(t− t_{0})$ in equation (3), we have,
$$\mathrm{x(t− t_{0})=\sum_{n=−\infty}^{\infty}C_{n}e^{jn\omega_{0}(t− t_{0})}}$$
$$\mathrm{\Rightarrow\:x(t− t_{0})=\sum_{n=−\infty}^{\infty}(C_{n}e^{-jn\omega_{0}t_{0}})e^{jn\omega_{0}t}… (4)}$$
$$\mathrm{∵\:\sum_{n=−\infty}^{\infty}(C_{n}e^{-jn\omega_{0}t_{0}})e^{jn\omega_{0}t}=FS^{-1}[C_{n}e^{-jn\omega_{0}t_{0}}]… (5)}$$
From equations (4) & (5), we get,
$$\mathrm{x(t− t_{0})\overset{FT}{\leftrightarrow}e^{-jn\omega_{0}t_{0}}C_{n}\:\:(Hence,\:\:Proved)}$$
Time Reversal Property of Fourier Series
Let $x(t)$ is a periodic function with time period $T$ and with Fourier series coefficient $C_{n}$. Then, if
$$\mathrm{x(t)\overset{FT}{\leftrightarrow}C_{n}}$$
Then, the time reversal property of continuous-time Fourier series states that
$$\mathrm{x(-t)\overset{FT}{\leftrightarrow}C_{-n}}$$
Proof
From the definition of continuous-time Fourier series, we have,
$$\mathrm{x(t)=\sum_{n=−\infty}^{\infty}C_{n}e^{jn\omega_{0} t}… (6)}$$
Replacing $t$ by $(−t)$ in equation (6), we get,
$$\mathrm{x(-t)=\sum_{n=−\infty}^{\infty}C_{n}e^{jn\omega_{0} (-t)}… (7)}$$
Substituting $(n = −k)$ in the RHS of equation (7), we have,
$$\mathrm{x(-t)=\sum_{k=−\infty}^{-\infty}C_{-k}e^{j(-k)\omega_{0}(-t)}}$$
$$\mathrm{\Rightarrow\:x(-t)=\sum_{k=−\infty}^{\infty}C_{-k}e^{jk\omega_{0}t}… (8)}$$
Now, by substituting $(k= n)$ in equation (8), we get,
$$\mathrm{x(-t)=\sum_{n=−\infty}^{\infty}C_{-k}e^{jn\omega_{0}t}=FS^{-1}[C_{-n}]}$$
$$\mathrm{\therefore\:x(-t)\overset{FT}{\leftrightarrow}C_{-n}\:\:(Hence\:proved)}$$
Time Scaling Property of Fourier Series
Let $x(t)$ is a periodic function with time period $T$ and with Fourier series coefficient $C_{n}$. Then, if
$$\mathrm{x(t)\overset{FT}{\leftrightarrow}C_{n}}$$
Then, the time scaling property of continuous-time Fourier series states that
$$\mathrm{x(at)\overset{FT}{\leftrightarrow}C_{n}\:\:with\:\omega_{0}\rightarrow\:a\omega_{0}}$$
Proof
From the definition of continuous-time Fourier series, we get,
$$\mathrm{x(t)=\sum_{n=−\infty}^{\infty}C_{n}\:e^{jn\omega_{0} t}… (9)}$$
Replacing $t$ by $(at)$ in equation (9), we get,
$$\mathrm{x(at)=\sum_{n=−\infty}^{\infty}C_{n}\:e^{jn\omega_{0} at}}$$
$$\mathrm{\Rightarrow\:x(at)=\sum_{n=−\infty}^{\infty}C_{n}\:e^{jn(a\omega_{0}) t}=FS^{-1}[C_{n}]… (10)}$$
Therefore,
$$\mathrm{x(at)\overset{FT}{\leftrightarrow}C_{n}\:\:with\:\omega \rightarrow a\omega_{0}\:\:(Hence,\:\:proved)}$$
- Related Articles
- Time Differentiation and Integration Properties of Continuous-Time Fourier Series
- Time Shifting and Frequency Shifting Properties of Discrete-Time Fourier Transform
- Signals & Systems – Properties of Continuous Time Fourier Series
- Time Scaling and Frequency Shifting Properties of Laplace Transform
- Properties of Continuous-Time Fourier Transform (CTFT)
- Convolution Property of Continuous-Time Fourier Series
- Parseval’s Theorem in Continuous-Time Fourier Series
- Linearity and Conjugation Property of Continuous-Time Fourier Series
- Multiplication or Modulation Property of Continuous-Time Fourier Series
- Time Scaling Property of Fourier Transform
- Signals and Systems – Time-Reversal Property of Fourier Transform
- Time Convolution and Frequency Convolution Properties of Discrete-Time Fourier Transform
- Signals and Systems – Time-Shifting Property of Fourier Transform
- Laplace Transform – Time Reversal, Conjugation, and Conjugate Symmetry Properties
- Signals and Systems – Properties of Discrete-Time Fourier Transform
