- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Time Convolution Theorem
Convolution
The convolution of two signals π₯(π‘) and β(π‘) is defined as,
$$\mathrm{y\left ( t \right )=x\left( t \right )\ast h\left ( t \right )=\int_{-\infty }^{\infty}x\left ( \tau \right )h\left ( t-\tau \right )d\tau}$$
This integral is also called the convolution integral.
Time Convolution Theorem
Statement – The time convolution theorem states that the convolution in time domain is equivalent to the multiplication of their spectrum in frequency domain. Therefore, if the Fourier transform of two time signals is given as,
$$\mathrm{x_{1}\left ( t \right )\overset{FT}{\leftrightarrow}X_{1} \left ( \omega \right )}$$
And
$$\mathrm{x_{2}\left ( t \right )\overset{FT}{\leftrightarrow}X_{2} \left ( \omega \right )}$$
Then, according to the time convolution theorem,
$$\mathrm{x_{1}\left ( t \right )\ast x_{2}\left ( t \right )\overset{FT}{\leftrightarrow}X_{1} \left ( \omega \right )\cdot X_{2} \left ( \omega \right )}$$
Proof
From the definition of Fourier transform, we have,
$$\mathrm{F\left [ x\left ( t \right ) \right ]=\int_{-\infty }^{\infty }x\left ( t \right )e^{-j\omega t}dt}$$
Therefore,
$$\mathrm{F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]e^{-j\omega t}dt}$$
Also, by the definition of convolution, we have,
$$\mathrm{x_{1}\left ( t \right )\ast x_{2}\left ( t \right )=\int_{-\infty }^{\infty }x_{1}\left ( \tau \right )x_{2}\left ( t-\tau \right )d\tau }$$
$$\mathrm{\therefore F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }\left [ \int_{-\infty }^{\infty }x_{1}\left ( \tau \right )x_{2}\left ( t-\tau \right )d\tau \right ]e^{-j\omega t}dt}$$
By rearranging the order of integrations, we get,
$$\mathrm{F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }x_{1}\left ( \tau \right )\left [ \int_{-\infty }^{\infty }x_{2}\left ( t-\tau \right )e^{-j\omega t}dt \right ]d\tau}$$
On substituting (π‘ − π) = π’, in the second integration, we get, π‘ = π’ + π and ππ‘ = ππ’
$$\mathrm{\therefore F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }x_{1}\left ( \tau \right )\left [ \int_{-\infty }^{\infty }x_{2}\left ( u \right )e^{-j\omega \left ( u+\tau \right )}du \right ]d\tau}$$
$$\mathrm{\Rightarrow F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }x_{1}\left ( \tau \right )\left [ \int_{-\infty }^{\infty }x_{2}\left ( u \right )e^{-j\omega u}du \right ]e^{-j\omega \tau }d\tau}$$
$$\mathrm{\Rightarrow F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }x_{1}\left ( \tau \right ) X_{2}\left ( \omega \right )e^{-j\omega \tau }d\tau =X_{2}\left ( \omega \right )\int_{-\infty}^{\infty}x_{1}\left ( \tau \right )e^{-j\omega \tau }d\tau }$$
$$\mathrm{\Rightarrow F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }x_{1}\left ( \tau \right ) X_{2}\left ( \omega \right )e^{-j\omega \tau }d\tau =X_{2}\left ( \omega \right )\int_{-\infty}^{\infty}x_{1}\left ( \tau \right )e^{-j\omega \tau }d\tau }$$
$$\mathrm{\Rightarrow F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=X_{2}\left ( \omega \right )X_{1}\left ( \omega \right )}$$
Therefore, it proves that,
$$\mathrm{x_{1}\left ( t \right )\ast x_{2}\left ( t \right )\overset{FT}{\leftrightarrow}X_{1}\left ( \omega \right )\cdot X_{2}\left ( \omega \right )}$$
The above expression is known as Time Convolution Theorem.
- Related Articles
- Frequency Convolution Theorem
- Time Convolution and Frequency Convolution Properties of Discrete-Time Fourier Transform
- Convolution Property of Continuous-Time Fourier Series
- Time Convolution and Multiplication Properties of Laplace Transform
- Parsevalβs Theorem in Continuous-Time Fourier Series
- Convolution Property of Z-Transform
- Inverse Z-Transform by Convolution Method
- Carnots Theorem
- What is Convolution in Signals and Systems?
- Properties of Convolution in Signals and Systems
- Explain Superposition Theorem
- The PACELC theorem
- Convolution Property of Fourier Transform β Statement, Proof & Examples
- Signals and Systems β Relation between Convolution and Correlation
- What isΒ basic proportional theorem and convers of basic proportional theorem?
