- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Properties of Z-Transform
Z-Transform
The Z-Transform is a mathematical tool which is used to convert the difference equations in time domain into the algebraic equations in the z-domain. Mathematically, the Z-transform of a discrete-time signal or a sequence $\mathit{x}\mathrm{\left(\mathit{n}\right)}$ is defined as −
$$\mathrm{\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty }}^{\infty }\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z}^{-\mathit{n}}}$$
Properties of Z-Transform
The following table highlights some of the important properties of Z-Transform −
Property | Time-Domain | z-Domain | Region of Convergence (ROC) |
---|---|---|---|
Notation | $\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}}$ | $\mathrm{\mathit{X}\mathrm{\left(\mathit{z}\right)}}$ | $\mathrm{\mathit{R}}$ |
$\mathrm{\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{n}\right)}}$ | $\mathrm{\mathit{X}_{\mathrm{1}}\mathrm{\left(\mathit{z}\right)}}$ | $\mathrm{\mathit{R}_{\mathrm{1}}}$ | |
$\mathrm{\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{n}\right)}}$ | $\mathrm{\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{z}\right)}}$ | $\mathrm{\mathit{R}_{\mathrm{2}}}$ | |
Linearity and Superposition | $\mathrm{\mathit{a}\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{n} \right)}\:\mathrm{+}\:\mathit{b}\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{n} \right)}}$ | $\mathrm{\mathit{a}\mathit{X}_{\mathrm{1}}\mathrm{\left(\mathit{z} \right)}\:\mathrm{+}\:\mathit{b}\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{z}\right)}}$ | $\mathrm{\mathit{R}_{\mathrm{1}}\:\cap \mathit{R}_{\mathrm{2}}}$ |
Time-Shifting | $\mathrm{\mathit{x}\mathrm{\left(\mathit{n-k}\right)}}$ | $\mathrm{\mathit{z}^{-\mathit{k}}\mathit{X}\mathrm{\left(\mathit{z}\right)}}$ | $\mathrm{\mathrm{same\:as\:}\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{except}\:\mathit{z}\:\mathrm{=}\:\mathrm{0}}$ |
$\mathrm{\mathit{x}\mathrm{\left(\mathit{n\mathrm{+}\mathit{k}}\right)}}$ | $\mathrm{\mathit{z}^{\mathit{k}}\mathit{X}\mathrm{\left(\mathit{z}\right)}}$ | $\mathrm{\mathrm{same\:as\:}\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{except}\:\mathit{z}\:\mathrm{=}\:\mathrm{\infty}}$ | |
Scaling in zdomain | $\mathrm{\mathit{a}^{\mathit{n}}\mathit{x}\mathrm{\left(\mathit{n}\right)}}$ | $\mathrm{\mathit{X}\mathrm{\left( \frac{\mathit{z}}{\mathit{a}}\right )}}$ | $\mathrm{\left|\mathit{a}\right|\mathit{R}_{\mathrm{1}}<\left|\mathit{z}\right|<\left|\mathit{a}\right|\mathit{R}_{\mathrm{2}}}$ |
Time Reversal | $\mathrm{\mathit{x}\mathrm{\left(\mathit{-n}\right)}}$ | $\mathrm{\mathit{X}\mathrm{\left(\mathit{z}^{-\mathrm{1}}\right)}}$ | $\mathrm{\mathrm{\left(\frac{1}{\mathit{R}_{\mathrm{2}}}\right)}<\left| \mathit{z}\right|<\mathrm{\left(\frac{1}{\mathit{R}_{\mathrm{1}}}\right)}}$ |
Time Expansion | $\mathrm{\mathit{x}\mathrm{\left(\frac{\mathit{n}}{\mathit{k}}\right )}}$ | $\mathrm{\mathit{X}\mathrm{\left(\mathit{z}^{\mathit{k}}\right)}}$ | $\mathrm{}$ |
Conjugation | $\mathrm{\mathit{x}^{*}\mathrm{\left(\mathit{n}\right)}}$ | $\mathrm{\mathit{X}^{*}\mathrm{\left(\mathit{z}^{*}\right)}}$ | $\mathrm{\mathit{R}_{\mathrm{1}}<\left|\mathit{z} \right|<\mathit{R}_{\mathrm{2}}}$ |
Convolution | $\mathrm{\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{n}\right)} * \mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{n}\right)}}$ | $\mathrm{\mathit{X}_{\mathrm{1}}\mathrm{\left(\mathit{z}\right)} \mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{z}\right)}}$ | $\mathrm{\mathrm{At\:least}\:\mathit{R}_{\mathrm{1}}\cap \mathit{R}_{\mathrm{2}}}$ |
Correlation | $\mathrm{\mathit{R}_{\mathit{x}_{\mathrm{1}}\mathit{x}_{\mathrm{2}}}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{n}\right)} \bigotimes \mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{n}\right)}}$ | $\mathrm{\mathit{X}_{\mathrm{1}}\mathrm{\left(\mathit{z}\right)} \mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{z}^{-\mathrm{1}}\right)}}$ | $\mathrm{\mathrm{At\:least}\:\mathit{R}_{\mathrm{1}}\cap \mathit{R}_{\mathrm{2}}}$ |
Multiplication | $\mathrm{\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{n}\right)} \mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{n}\right)}}$ | $\mathrm{\frac{1}{2\mathit{\pi j}}\oint_{c}^{}\mathit{X}_{\mathrm{1}}\mathrm{\left( v\right )}\mathit{X}_{\mathrm{2}}\mathrm{\left(\frac{\mathit{z}}{\mathit{v}}\right)}\mathit{v}^{\mathrm{-1}}\:\mathit{dv}}$ | $\mathrm{\mathrm{At\:least}\:\mathit{R}_{\mathrm{1}} \mathit{R}_{\mathrm{2}}<\left| \mathit{z}\right|<\mathit{R}_{\mathrm{1}\mathit{u}}\mathit{R}_{\mathrm{2}\mathit{u}}}$ |
Differentiation in z-domain | $\mathrm{\mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)}}$ | $\mathrm{\mathit{-z}\frac{\mathit{d}}{\mathit{dz}}\mathit{X}\mathrm{\left(\mathit{z}\right)}}$ | $\mathrm{\mathit{R}_{\mathrm{1}}<\left|\mathit{z}\right|<\mathit{R}_{\mathrm{2}}}$ |
Accumulation | $\mathrm{\sum_{\mathit{k=-\infty}}^{\mathit{n}}\: \mathit{x}\mathrm{\left(\mathit{k}\right)}}$ | $\mathrm{\frac{1}{\mathrm{\left( \mathrm{1-}\mathit{z}^{-\mathrm{1}}\right)}}\mathit{X}\mathrm{\left(\mathit{z}\right)}}$ | $\mathrm{}$ |
Parseval’s Theorem | $\mathrm{\sum_{\mathit{n=-\infty}}^{\mathit{\infty}}\: \mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{n}\right)}\mathit{x}_{\mathrm{2}}^{*}\mathrm{\left(\mathit{n}\right)}}$ | $\mathrm{\frac{1}{2\mathit{\pi j}}\oint_{c}^{}\mathit{X}_{\mathrm{1}}\mathrm{\left( v\right )}\mathit{X}_{\mathrm{2}}^{*}\mathrm{\left(\frac{\mathrm{1}}{\mathit{v}^{*}}\right)}\mathit{v}^{\mathrm{-1}}\:\mathit{dv}}$ | $\mathrm{}$ |
Initial Value Theorem | $\mathrm{\mathit{x}\mathrm{\left(\mathrm{\mathrm{0}}\right)}\:\mathrm{=}\:\displaystyle \lim_{\mathit{n} \to 0}\mathit{x}\mathrm{\left(\mathit{n}\right)}}$ | $\mathrm{\displaystyle \lim_{\mathit{z} \to \infty }\mathit{X}\mathrm{\left(\mathit{z}\right)}}$ | $\mathrm{}$ |
Final Value Theorem | $\mathrm{\mathit{x}\mathrm{\left(\mathrm{\mathit{\infty }}\right)}\:\mathrm{=}\:\displaystyle \lim_{\mathit{n} \to \infty }\mathit{x}\mathrm{\left(\mathit{n}\right)}}$ | $\mathrm{\displaystyle \lim_{\mathit{z} \to 1}\mathrm{\left ( \mathit{z-\mathrm{1}} \right)}\mathit{X}\mathrm{\left(\mathit{z}\right)}
\mathrm{If \mathrm{\left ( \mathit{z-\mathrm{1}} \right )}}\:\mathrm{has \:no\: pole \:on\:or\:outside\:the\:unit\:circle.} }$ | $\mathrm{}$ |
- Related Articles
- Conjugation and Accumulation Properties of Z-Transform
- Signals and Systems – Properties of Region of Convergence (ROC) of the Z-Transform
- Properties of Hilbert Transform
- Transform Analysis of LTI Systems using Z-Transform
- Differentiation in z-Domain Property of Z-Transform
- Z-Transform of Exponential Functions
- Convolution Property of Z-Transform
- Correlation Property of Z-Transform
- Multiplication Property of Z-Transform
- Difference between Z-Transform and Laplace Transform
- Initial Value Theorem of Z-Transform
- Final Value Theorem of Z-Transform
- Time Shifting Property of Z-Transform
- Time Reversal Property of Z-Transform
- Time Expansion Property of Z-Transform

Advertisements