Properties of Hilbert Transform


Hilbert Transform

When the phase angles of all the positive frequency spectral components of a signal are shifted by (-90°) and the phase angles of all the negative frequency spectral components are shifted by (+90°), then the resulting function of time is called the Hilbert transform of the signal.

The Hilbert transform of a signal$\mathit{x\left(t\right)}$ is obtained by the convolution of $\mathit{x\left(t\right)}$ and (1/πt),i.e.,,

$$\mathrm{\mathit{\hat{x}\left(t\right)=x\left(t\right)*\left ( \frac{\mathrm{1}}{\mathit{\pi t}} \right )}}$$

Properties of Hilbert Transform

The statement and proofs of the properties of the Hilbert transform are given as follows −

Property 1

The Hilbert transform does not change the domain of a signal.

Proof

Let a signal $\mathit{x\left(t\right)}$, which is in time domain. The Hilbert transform of $\mathit{x\left(t\right)}$, i.e., $\mathit{\hat{x}\left(t\right)}$ is obtained by the convolution of $\mathit{x\left(t\right)}$ and.$\mathit{\left ( \frac{\mathrm{1}}{\pi t} \right )}$ Hence, the function $\mathit{\hat{x}\left(t\right)}$ is also in time domain. Therefore, it proves that the Hilbert transform does not change the domain of a signal.

Property 2

The Hilbert transform does not change the magnitude spectrum of a signal.

Proof

The Fourier transform of $\mathit{\hat{x}\left(t\right)}$ is given by,

$$\mathrm{\mathrm{\mathit{\hat{X}\left(\omega \right)}\mathrm{=}\mathit{-j}\:\mathrm{sgn}\left(\omega \right)\:X\left(\omega\right)}}$$

$$\mathrm{\mathit{\because\left | -j\:\mathrm{sgn}\left(\omega\right) \right |=\mathrm{1}}}$$

Therefore,

$$\mathrm{\mathit{\left | \hat{X}\left(\omega\right) \right |=\left | X\left(\omega\right)\right |}}$$

This proves that the Hilbert transform does not change the magnitude spectrum of a signal, i.e., $\mathit{x\left(t\right)}$ and $\mathit{\hat{x}\left(t\right)}$ have the same magnitude spectrum.

Also, the function $\mathit{x\left(t\right)}$ and $\mathit{\hat{x}\left(t\right)}$ have the same energy density function and same autocorrelation function. If the function $\mathit{x\left(t\right)}$ is band limited, then its Hilbert transform $\mathit{\hat{x}\left(t\right)}$ is also band limited.

Property 3

A signal $\mathit{x\left(t\right)}$ and its Hilbert transform $\mathit{\hat{x}\left(t\right)}$ are orthogonal to each other.

Proof

In order to prove the Orthogonality between $\mathit{x\left(t\right)}$ and $\mathit{\hat{x}\left(t\right)}$, we have to show that,

$$\mathrm{\mathit{\int_{-\infty }^{\infty }x\left(t\right)\:\hat{x}\left(t\right)\:dt=\mathrm{0}}}$$

Now, according to Rayleigh's energy theorem, we get,

$$\mathrm{\mathit{\int_{-\infty }^{\infty }x\left(t\right)\:\hat{x}\left(t\right)\:dt=\int_{-\infty }^{\infty }x\left(t\right)\:\hat{x}^{*}\left(t\right)\:dt}}$$

$$\mathrm{\mathit{\Rightarrow \int_{-\infty }^{\infty }x\left(t\right)\:\hat{x}\left(t\right)\:dt=\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }X\left(\omega\right)\hat{X}^{*}\left(\omega\right)\:d\omega} }$$

$$\mathrm{\mathit{\Rightarrow \int_{-\infty }^{\infty }x\left(t\right)\:\hat{x}\left(t\right)\:dt=\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }X\left(\omega\right)\left |j\: \mathrm{sgn}\left(\omega\right)\hat{X}^{*}\left(\omega\right) \right |\: d\omega }}$$

$$\mathrm{\mathit{\Rightarrow \int_{-\infty }^{\infty }x\left(t\right)\:\hat{x}\left(t\right)\:dt=\frac{j}{\mathrm{2}\pi }\int_{-\infty }^{\infty }\mathrm{sgn}\left(\omega\right)\left | X\left(\omega \right)\right |^{\mathrm{2}}\:d\omega } }$$

As the function $\mathit{\mathrm{\mathrm{sgn}}\left(\omega \right ) }$ is an odd function and the function $\mathit{\left | X\left(\omega\right) \right |^{\mathrm{2}}}$ is an even function. Therefore, the integral on the RHS is zero, i.e.,

$$\mathrm{\mathit{\int_{-\infty }^{\infty }x\left(t\right)\:\hat{x}\left(t\right)\:dt=\mathrm{0}}}$$

Hence, this proves that $\mathit{x\left(t\right)}$ and $\hat{x}(t)$ are orthogonal to each other over the interval $(-\infty)$ to $(\infty)$.

Property 4

If the Hilbert transform of $\mathit{x\left(t\right)}$ is $\mathit{\hat{x}\left(t\right)}$, then the Hilbert transform of $\hat{x}(t)$ is $\mathit{\left [-x(t)\right ]}$.

Proof

The Hilbert transform of a signal $\mathit{x\left(t\right)}$ is equivalent to passing the signal $\mathit{x\left(t\right)}$ through a device which is having a transfer function equal to $\mathit{\left [ -j\:\mathrm{sgn}\left(\omega\right) \right ]}$. Therefore, a double Hilbert transform of $\mathit{x\left(t\right)}$ is equivalent to passing $\mathit{x\left(t\right)}$ through a cascade of such devices. Hence, the overall transfer function of such cascaded system is,

$$\mathrm{\mathit{\left [ -j\:\mathrm{sgn}\left(\omega\right) \right ]^{\mathrm{2}}=-\mathrm{1}\left [ \mathrm{sgn}\left(\omega\right) \right ]^{\mathrm{2}}=-\mathrm{1}.\left(\mathrm{1}\right)\mathrm{=}-\mathrm{1};\:\:\mathrm{for} \:\mathrm{all} \:\mathrm{frequencies}}}$$

Hence, the resulting output is $\mathit{\left [-x(t)\right ]}$, i.e., the Hilbert transform of $\mathit{\hat{x}\left(t\right)}$ is $\mathit{\left [-x(t)\right ]}$.

Updated on: 17-Dec-2021

2K+ Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements