- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Properties of Continuous-Time Fourier Transform (CTFT)
Fourier Transform
The Fourier transform of a continuous-time function $x(t)$ is defined as,
$$\mathrm{X(\omega)=\int_{−\infty}^{\infty}x(t)e^{-j\omega t}dt}$$
Inverse Fourier Transform
The inverse Fourier transform of a continuous-time function is defined as,
$$\mathrm{x(t)=\frac{1}{2\pi}\int_{−\infty}^{\infty}X(\omega)e^{j\omega t}d\omega}$$
Properties of Fourier Transform
The continuous-time Fourier transform (CTFT) has a number of important properties. These properties are useful for driving Fourier transform pairs and also for deducing general frequency domain relationships. These properties also help to find the effect of various time domain operations on the frequency domain. Some of the important properties of continuous time Fourier transform are given in the table as −
Property of CTFT | Time Domain x(t) | Frequency Domain X(ω) |
---|---|---|
Linearity Property | $ax_{1}(t)+bx_{2}(t)$ | $aX_{1}(\omega)+bX_{2}(\omega)$ |
Time Shifting Property | $x(t ± t_{0})$ | $e^{± j\omega t_{0}}X(\omega)$ |
Frequency Shifting Property | $ e^{± j\omega_{0} t}x(t)$ | $X(\omega ∓ \omega_{0})$ |
Time Reversal Property | x(-t) | $x(-\omega)$ |
Time Scaling Property | x(at) | $\frac{1}{|a|} X(\frac{\omega}{a})$ |
Time Differentiation Property | $\frac{d}{dt} x(t)$ | $j \omega X(\omega)$ |
Frequency Derivative Property | $t.x(t)$ | $j\frac{d}{d\omega}X(\omega)$ |
Time Integration Property | $\int_{−\infty}^{\infty} x(t) d τ$ | $\frac{X(\omega)}{j\omega}$ |
Convolution Property | $x_{1}(t)*x_{2}(t)$ | $X_{1}(\omega)X_{2}(\omega)$ |
Multiplication Property | $x_{1}(t)x_{2}(t)$ | $\frac{1}{2\pi}[X_{1}(\omega)*X_{2}(\omega)]$ |
Duality or Symmetry Property | X(t) | $2\pi x(-\omega)$ |
Modulation Property | $x(t)\:cos\:\omega_{0}t$ | $\frac{1}{2}[X(\omega-\omega_{0})+X(\omega+\omega_{0})]$ |
$x(t)\:sin\:\omega_{0}t$ | $\frac{1}{2j}[X(\omega-\omega_{0})-X(\omega+\omega_{0})]$ | |
Conjugation Property | x*(t) | $x*(-\omega)$ |
Autocorrelation Property | R(τ) | $|X(-\omega)|^{2}$ |
Parseval’s Theorem | $\int_{−\infty}^{\infty} x_{1}(t)x_{2}^*(t)dt$ | $\frac{1}{2\pi}\int_{−\infty}^{\infty}X_{1}(\omega)x_{2}^*(\omega)d\omega$ |
Parseval’s Identity | $\int_{−\infty}^{\infty}|x(t)|^{2} dt$ | $\frac{1}{2\pi}\int_{−\infty}^{\infty}|X(\omega)|^{2}d\omega$ |
Area Under the Curve Property | $\int_{−\infty}^{\infty}x(t)dt$ | $\frac{1}{2\pi}X(0)$ |
x(0) | $\int_{−\infty}^{\infty}X(\omega)d\omega$ |
- Related Articles
- Signals & Systems – Properties of Continuous Time Fourier Series
- Time Differentiation and Integration Properties of Continuous-Time Fourier Series
- Time Shifting, Time Reversal, and Time Scaling Properties of Continuous-Time Fourier Series
- Signals and Systems – Properties of Discrete-Time Fourier Transform
- Time Shifting and Frequency Shifting Properties of Discrete-Time Fourier Transform
- Time Convolution and Frequency Convolution Properties of Discrete-Time Fourier Transform
- Linearity, Periodicity and Symmetry Properties of Discrete-Time Fourier Transform
- Discrete-Time Fourier Transform
- Convolution Property of Continuous-Time Fourier Series
- Time Differentiation Property of Fourier Transform
- Time Scaling Property of Fourier Transform
- Inverse Discrete-Time Fourier Transform
- Parseval’s Theorem in Continuous-Time Fourier Series
- Linearity and Conjugation Property of Continuous-Time Fourier Series
- Multiplication or Modulation Property of Continuous-Time Fourier Series

Advertisements