- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Linearity, Periodicity and Symmetry Properties of Discrete-Time Fourier Transform
Discrete-Time Fourier Transform
The Fourier transform of a discrete-time sequence is known as the discrete-time Fourier transform (DTFT). Mathematically, the discrete-time Fourier transform of a discrete-time sequence $\mathrm{\mathit{x\left ( n \right )}}$ is defined as −
$$\mathrm{\mathit{F\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( \omega \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )e^{-j\, \omega n}}}$$
Linearity Property of Discrete-Time Fourier Transform
Statement – The linearity property of discrete-time Fourier transform states that, the DTFT of a weighted sum of two discrete-time sequences is equal to the weighted sum of individual discrete-time Fourier transforms. Therefore, if
$$\mathrm{\mathit{F\left [ x_{\mathrm{1}}\left ( n \right ) \right ]\overset{FT}{\leftrightarrow}X_{\mathrm{1}}\left ( \omega \right )\: \: \mathrm{and}\: \: F\left [ x_{\mathrm{2}}\left ( n \right ) \right ]\mathrm{\, =\, }X_{\mathrm{2}}\left ( \omega \right ) }}$$
Then,
$$\mathrm{\mathit{F\left [a\, x_{\mathrm{1}}\left ( n \right )\mathrm{\, +\, }b\,x_{\mathrm{2}}\left ( n \right ) \right ]\mathrm{\, =\, }a\, X_{\mathrm{1}}\left ( \omega \right )\mathrm{\, +\, }b\, X_{\mathrm{2}}\left ( \omega \right ) }}$$
Proof
From the definition of discrete-time Fourier transform, we have,
$$\mathrm{\mathit{F\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( \omega \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )e^{-j\, \omega n}}}$$
$$\mathrm{\mathit{\therefore F\left [a\, x_{\mathrm{1}}\left ( n \right )\mathrm{\, +\, }b\,x_{\mathrm{2}}\left ( n \right ) \right ]\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }\left [ a\, x_{\mathrm{1}}\left ( n \right )\mathrm{\, +\, }b\, x_{\mathrm{2}}\left (n \right ) \right ]e^{-j\, \omega n} }}$$
$$\mathrm{\mathit{\Rightarrow F\left [a\, x_{\mathrm{1}}\left ( n \right )\mathrm{\, +\, }b\,x_{\mathrm{2}}\left ( n \right ) \right ]\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }a\, x_{\mathrm{1}}\left ( n \right )e^{-j\, \omega n}\mathrm{\, +\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty } b\, x_{\mathrm{2}}\left ( n \right )e^{-j\, \omega n}}} $$
$$\mathrm{\mathit{\therefore F\left [a\, x_{\mathrm{1}}\left ( n \right )\mathrm{\, +\, }b\,x_{\mathrm{2}}\left ( n \right ) \right ]\mathrm{\, =\, }a\, X_{\mathrm{1}}\left ( \omega \right )\mathrm{\, +\, }b\, X_{\mathrm{2}}\left ( \omega \right ) }}$$
Periodicity Property of Discrete-Time Fourier Transform
The periodicity property of discrete-time Fourier transform states that the DTFT X(𝜔) is periodic in 𝜔 with period 2π, that is
$$\mathrm{\mathit{X\left ( \omega \right )\mathrm{\, =\, }X\left ( \omega \mathrm{\, +\, }\mathrm{2}n\pi \right )}}$$
Therefore, using the periodicity property of DTFT, we need only one period of X(𝜔) for the analysis and not the whole range −∞ < 𝜔 < ∞.
Symmetry Property of Discrete-Time Fourier Transform
The discrete-time Fourier transform (DTFT) X(𝜔) is a complex function of 𝜔 and hence can be expressed as −
$$\mathrm{\mathit{X\left ( \omega \right )\mathrm{\, =\, }X_{r}\left ( \omega \right )\mathrm{\, +\, }j\, X_{i}\left ( \omega \right )}}$$
Where,
$\mathrm{\mathit{X_{r}\left ( \omega \right )}}$ is the real part of $\mathrm{\mathit{X\left ( \omega \right )}}$, and
$\mathrm{\mathit{X_{i}\left ( \omega \right )}}$ is the imaginary part of $\mathrm{\mathit{X\left ( \omega \right )}}$.
Now, from the definition of the DTFT, we have,
$$\mathrm{\mathit{X\left ( \omega \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )e^{-j\, \omega n}}}$$
$$\mathrm{\mathit{\Rightarrow X\left ( \omega \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )\mathrm{cos}\, \omega n-j\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )\mathrm{sin}\, \omega n}}$$
$$\mathrm{\mathit{\Rightarrow X_{r}\left ( \omega \right )\mathrm{\, +\, }j\, X_{i}\left ( \omega \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )\mathrm{cos}\, \omega n-j\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )\mathrm{sin}\, \omega n}}$$
On comparing LHS and RHS, we get,
$$\mathrm{\mathit{ X_{r}\left ( \omega \right ) \mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )\mathrm{cos}\, \omega n}}$$
And,
$$\mathrm{\mathit{X_{i}\left ( \omega \right )\mathrm{\, =\, }-\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )\mathrm{sin}\, \omega n}} $$
$$\mathrm{\mathit{\because \mathrm{cos}\left ( -\omega \right )n\mathrm{\, =\, }\mathrm{cos}\, \omega n\: \: \mathrm{and}\: \: \mathrm{sin}\left ( -\omega \right )n\mathrm{\, =\, }-\mathrm{sin}\, \omega n }}$$
$$\mathrm{\mathit{\therefore X_{r}\left ( -\omega \right ) \mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )\mathrm{cos}\, \left ( -\omega \right ) n\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )\mathrm{cos}\, \omega n}}$$
$$\mathrm{\mathit{\Rightarrow X_{r}\left ( -\omega \right ) \mathrm{\, =\, }X_{r}\left ( \omega \right )}}$$
i.e., the real part of DTFT $\mathrm{\mathit{X_{r}\left ( \omega \right )}}$ is an even function of 𝜔, i.e., it has even symmetry property.
Also,
$$\mathrm{\mathit{X_{i}\left ( -\omega \right )\mathrm{\, =\, }-\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )\mathrm{sin}\left ( -\omega \right ) n\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )\mathrm{sin}\,\omega n}}$$
$$\mathrm{\mathit{\therefore X_{i}\left ( -\omega \right )\mathrm{\, =\, }-X_{i}\left ( \omega \right )}}$$
Therefore, the imaginary part of DTFT $\mathrm{\mathit{X_{i}\left (\omega \right )}}$ is an odd function of 𝜔, i.e., it has odd symmetry property.
- Related Articles
- Signals and Systems – Properties of Discrete-Time Fourier Transform
- Time Shifting and Frequency Shifting Properties of Discrete-Time Fourier Transform
- Time Convolution and Frequency Convolution Properties of Discrete-Time Fourier Transform
- Discrete-Time Fourier Transform
- Inverse Discrete-Time Fourier Transform
- Signals and Systems – Relation between Discrete-Time Fourier Transform and Z-Transform
- Linearity and Frequency Shifting Property of Fourier Transform
- Properties of Continuous-Time Fourier Transform (CTFT)
- Differentiation in Frequency Domain Property of Discrete-Time Fourier Transform
- Laplace Transform – Time Reversal, Conjugation, and Conjugate Symmetry Properties
- Linearity and Conjugation Property of Continuous-Time Fourier Series
- Laplace Transform of Periodic Functions (Time Periodicity Property of Laplace Transform)
- Time Differentiation Property of Fourier Transform
- Time Scaling Property of Fourier Transform
- C++ Program to Compute Discrete Fourier Transform Using Naive Approach
