- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Laplace Transform – Time Reversal, Conjugation, and Conjugate Symmetry Properties
Laplace Transform
The Laplace transform is a mathematical tool which is used to convert the differential equation in time domain into the algebraic equations in the frequency domain or s-domain.
Mathematically, if $\mathrm{\mathit{x\left ( t \right )}}$ is a time domain function, then its Laplace transform is defined as −
$$\mathrm{\mathit{L\left [ x\left ( t \right ) \right ]\mathrm{\, =\,}X\left ( s \right )\mathrm{\, =\,}\int_{-\infty }^{\infty }x\left ( t \right )e^{-st}\:dt }}$$
Time Reversal Property of Laplace Transform
Statement – The time reversal property of Laplace transform states that if a signal is reversed about the vertical axis at origin in the time domain then its Laplace transform is also reversed about the vertical axis in the s-domain. Therefore, if
$$\mathrm{\mathit{x\left ( t \right )\overset{LT}{\leftrightarrow}X\left ( s \right )}}$$
Then,
$$\mathrm{\mathit{x\left ( -t \right )\overset{LT}{\leftrightarrow}X\left ( -s \right )}}$$
Proof
By the definition of Laplace transform, we can write,
$$\mathrm{\mathit{L\left [ x\left ( t \right ) \right ]\mathrm{\, =\,}X\left ( s \right )\mathrm{\, =\,}\int_{-\infty }^{\infty }x\left ( t \right )e^{-st}\:dt }}$$
Now, by substituting $\mathrm{\mathit{t\mathrm{\, =\,}\left ( -t \right )}}$, we have,
$$\mathrm{\mathit{L\left [ x\left ( -t \right ) \right ]\mathrm{\, =\,}\int_{-\infty }^{\infty }x\left ( -t \right )e^{-st}\:dt }}$$
Let $\mathrm{\mathit{\left ( -t \right )\mathrm{\, =\,}u}}$ in RHS of the above equation, then $\mathrm{\mathit{dt\mathrm{\, =\,}du}}$,
$$\mathrm{\mathit{\therefore L\left [ x\left ( -t \right ) \right ]\mathrm{\, =\,}\int_{-\infty }^{\infty }x\left ( u \right )e^{su}\:du }}$$
$$\mathrm{\mathit{\Rightarrow L\left [ x\left ( -t \right ) \right ]\mathrm{\, =\,}\int_{-\infty }^{\infty }x\left ( u \right )e^{-\left ( -s \right )u}\:du\mathrm{\, =\,}X\left ( -s \right ) }}$$
$$\mathrm{\mathit{\therefore x\left ( -t \right )\overset{LT}{\leftrightarrow}X\left ( -s \right ) }}$$
Thus, it proves the time reversal property of the Laplace transform.
Conjugation Property of Laplace Transform
Statement – The conjugation property of the Laplace transform states that for a complex function $\mathrm{\mathit{x\left ( t \right )}}$ if
$$\mathrm{\mathit{x\left ( t \right )\overset{LT}{\leftrightarrow}X\left ( s \right ) }}$$
Then,
$$\mathrm{\mathit{x^{\ast }\left ( t \right )\overset{LT}{\leftrightarrow}X^{\ast }\left ( s^{\ast } \right ) }}$$
Proof
By the definition of Laplace transform, we have,
$$\mathrm{\mathit{L\left [ x^{\ast }\left ( t \right ) \right ]\mathrm{\, =\,}\int_{-\infty }^{\infty }x^{\ast }\left ( t \right )e^{-st}\:dt}}$$
$$\mathrm{\mathit{\Rightarrow L\left [ x^{\ast }\left ( t \right ) \right ]\mathrm{\, =\,}\left [ \int_{-\infty }^{\infty }x\left ( t \right )e^{-\left ( s^{\ast } \right )t}\:dt \right ]^{\ast } \mathrm{\, =\,}\left [ X\left ( s^{\ast } \right ) \right ]^{\ast }}}$$
$$\mathrm{\mathit{\Rightarrow L\left [ x^{\ast }\left ( t \right ) \right ]\mathrm{\, =\,}X^{\ast }\left ( s^{\ast } \right )}}$$
Or it may be represented as,
$$\mathrm{\mathit{ x^{\ast }\left ( t \right )\overset{LT}{\leftrightarrow}X^{\ast }\left ( s^{\ast } \right )}}$$
Conjugate Symmetry Property of Laplace Transform
Statement – The conjugate symmetry property of Laplace transform states that if,
$$\mathrm{\mathit{ x\left ( t \right )\overset{LT}{\leftrightarrow}X\left ( s \right )}}$$
Then, by the conjugation property, we get,
$\mathrm{\mathit{ x^{\ast }\left ( t \right )\overset{LT}{\leftrightarrow}X^{\ast }\left ( s^{\ast } \right );}}$ for complex $\mathrm{\mathit{x\left ( t \right )}}$
And if $\mathrm{\mathit{x\left ( t \right )}}$ is real function, then according to the conjugate symmetry property, we have,
$$\mathrm{\mathit{X\left ( s \right )\mathrm{\, =\,}X^{\ast }\left ( s^{\ast } \right )}}$$
Proof
By the definition of the Laplace transform, we get,
$$\mathrm{\mathit{X\left ( s^{\ast } \right )\mathrm{\, =\,}\int_{-\infty }^{\infty }x\left ( t \right )e^{-\left ( s^{\ast } \right )t}\:dt }}$$
By taking conjugation on both sides of the above equation, we have,
$$\mathrm{\mathit{X^{\ast }\left ( s^{\ast } \right )\mathrm{\, =\,}\left [ \int_{-\infty }^{\infty }x\left ( t \right )e^{-\left ( s^{\ast } \right )t}\:dt \right ]^{\ast }\mathrm{\, =\,}\int_{-\infty }^{\infty }x\left ( t \right )e^{-\left ( s^{\ast } \right )^{\ast }t}\:dt }}$$
$\mathrm{\mathit{\Rightarrow X^{\ast }\left ( s^{\ast } \right )\mathrm{\, =\,}\int_{-\infty }^{\infty }x\left ( t \right )e^{-st}\:dt\mathrm{\, =\,}X\left ( s \right ); }}$ Where, $\mathrm{\mathit{x\left ( t \right )}}$ is real
Therefore, according to the conjugate symmetry property of the Laplace transform,
$$\mathrm{\mathit{X\left ( s \right )\mathrm{\, =\,}X^{\ast }\left ( s^{\ast } \right )}}$$
- Related Articles
- Time Convolution and Multiplication Properties of Laplace Transform
- Time Scaling and Frequency Shifting Properties of Laplace Transform
- Conjugation and Accumulation Properties of Z-Transform
- Linearity, Periodicity and Symmetry Properties of Discrete-Time Fourier Transform
- Signals and Systems – Properties of Laplace Transform
- Laplace Transform of Periodic Functions (Time Periodicity Property of Laplace Transform)
- Time Reversal Property of Z-Transform
- Time Differentiation Property of Laplace Transform
- Time Integration Property of Laplace Transform
- Time Shifting Property of Laplace Transform
- Signals and Systems – Time-Reversal Property of Fourier Transform
- Time Shifting, Time Reversal, and Time Scaling Properties of Continuous-Time Fourier Series
- Difference between Laplace Transform and Fourier Transform
- Difference between Z-Transform and Laplace Transform
- Relation between Laplace Transform and Fourier Transform
