What is Region of Convergence?

Region of Convergence (ROC) is defined as the set of points in s-plane for which the Laplace transform of a function $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ converges. In other words, the range ">

Laplace transform and Region of Convergence for right-sided and left-sided signals



What is Region of Convergence?

Region of Convergence (ROC) is defined as the set of points in s-plane for which the Laplace transform of a function $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ converges. In other words, the range of $\mathit{Re}\mathrm{\left(\mathit{s} \right)}$ (i.e.,σ) for which the function $\mathit{X}\mathrm{\left(\mathit{s}\right)}$ converges is called the region of convergence.

ROC of Right-Sided Signals

A signal $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ is said to be a right-sided signal if the signal $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ = 0 for t < $\mathit{T}_{\mathrm{1}}$ for some finite time $\mathit{T}_{\mathrm{1}}$ as shown in Figure-1.

For a right-sided signal $\mathit{x}\mathrm{\left(\mathit{t}\right)}$, the ROC of the Laplace transform $\mathit{X}\mathrm{\left(\mathit{s}\right)}$ is $\mathit{Re}\mathrm{\left(\mathit{s} \right )}>\mathrm{\sigma _{\mathrm{1}}}$, where $\mathrm{\sigma _{\mathrm{1}}}$ is a constant. Thus, the ROC of the Laplace transform of the right-sided signal is to the right of the line $\sigma \mathrm{=} \mathrm{\sigma _{\mathrm{1}}}$. A causal signal is an example of a right-sided signal.

Numerical Example - 1

Find the Laplace transform and ROC of the right-sided signal $\mathit{x}\mathrm{\left(\mathit{t}\right)}\:\mathrm{=}\:2\mathit{e^{-\mathrm{4}t}u\mathrm{\left(\mathit{t}\right )}\:\mathrm{+}\:\mathrm{4}e^{-\mathrm{4}t}u\mathrm{\left (\mathit{t}\right)}}$

Solution

The given signal is,

$$\mathrm{\mathit{x}\mathrm{\left(\mathit{t}\right)}\:\mathrm{=}\:2\mathit{e^{-\mathrm{4}t}\:u\mathrm{\left(\mathit{t}\right )}\:\mathrm{+}\:\mathrm{4}e^{-\mathrm{4}t}\:u\mathrm{\left (\mathit{t}\right)}}}$$

The given signal is a right-sided signal. Actually, it is a causal signal. Its Laplace transform is given by,

$$\mathrm{\mathit{L}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{t}\right)}\right]}\:\mathrm{=}\:2\mathit{L}\mathrm{\left[\mathit{e^{\mathrm{-4}t}\:u\mathrm{\left(\mathit{t}\right )}}\right]}\:\mathrm{+}\:4\mathit{L}\mathrm{\left[\mathit{e}^{\mathrm{-2}\mathit{t}}\:\mathit{u}\mathrm{\left (\mathit{t}\right)}\right]}}$$

$$\mathrm{\Rightarrow\:\mathit{X}\mathrm{\left(\mathit{s}\right)}\:\mathrm{=}\:\mathrm{\left(\frac{2}{\mathit{s}+\mathrm{4}}\right)}\mathrm{+}\mathrm{\left(\frac{4}{\mathit{s}+\mathrm{2}}\right)};\:\mathrm{ROC}\to \mathit{Re\mathrm{\left(\mathit{s}\right)}}>-4\:\mathrm{and}\:\mathit{Re\mathrm{\left(\mathit{s}\right)}}>-2}$$

Thus, the ROC of the given right sided signal is,

$$\mathrm{\mathrm{\left[\mathit{Re\mathrm{\left(\mathit{s}\right)}}>-4\:\cap \:\mathit{Re\mathrm{\left(\mathit{s}\right)}}>-2 \right ]}\:\mathrm{=}\:\mathit{Re\mathrm{\left(\mathit{s}\right)}}>-2}$$

$$\mathrm{\Rightarrow \mathrm{ROC\to }\mathit{Re\mathrm{\left(\mathit{s}\right)}}>-2}$$

The ROC of the Laplace transform of the given signal is shown in Figure-2. It is to be noted that the ROC extends to the right of the rightmost pole and no pole exists inside the ROC.

ROC of Left-Sided Signals

A signal $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ is said to be a left-sided signal if the signal $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ = 0 for t > $\mathit{T}_{\mathrm{2}}$ for some finite time $\mathit{T}_{\mathrm{2}}$ as shown in Figure-3.

For a left-sided signal $\mathit{x}\mathrm{\left(\mathit{t}\right)}$, the ROC of the Laplace transform $\mathit{X}\mathrm{\left(\mathit{s}\right)}$ is $\mathit{Re}\mathrm{\left(\mathit{s}\right)}<\mathrm{\sigma _{\mathrm{2}}}$ where $\mathrm{\sigma _{\mathrm{2}}}$ is a constant. Therefore, the ROC of the Laplace transform of a left-sided signal is to the left of the line $\sigma \mathrm{=}\mathrm{\sigma _{\mathrm{2}}}$. An anti-causal signal is an example of a left-sided signal.

Numerical Example - 2

Find the Laplace transform and ROC of the left sided signal $\mathit{x}\mathrm{\left(\mathit{t}\right)}\:\mathrm{=}\:\mathit{e^{\mathrm{2}t}\:u\mathrm{\left(\mathit{-t}\right )}\:\mathrm{+}\:\mathrm{3}e^{\mathrm{5}t}\:u\mathrm{\left (\mathit{-t}\right)}}$

Solution

The given signal is,

$$\mathrm{\mathit{x}\mathrm{\left(\mathit{t}\right)}\:\mathrm{=}\:\mathit{e^{\mathrm{2}t}\:u\mathrm{\left(\mathit{-t}\right )}\:\mathrm{+}\:\mathrm{3}\mathit{e}^{\mathrm{5}\mathit{t}}\:\mathit{u}\mathrm{\left (\mathit{-t}\right)}}}$$

Since the given signal is a left-sided signal, hence it is an anti-causal signal. The Laplace transform of the signal $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ is given by,

$$\mathrm{\mathit{L}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{t}\right)}\right]}\:\mathrm{=}\:\mathit{L}\mathrm{\left[\mathit{e^{\mathrm{2}t}\:u\mathrm{\left(\mathit{-t}\right )}}\right]}\mathrm{+}3\mathit{L}\mathrm{\left[\mathit{e}^{\mathrm{5}\mathit{t}}\:\mathit{u}\mathrm{\left (\mathit{-t}\right)}\right]}}$$

$$\mathrm{\Rightarrow\:\mathit{X}\mathrm{\left(\mathit{s}\right)}\mathrm{=}\:-\frac{1}{\mathit{s}-\mathrm{2}}-\frac{3}{\mathit{s}-\mathrm{5}};\:\mathrm{ROC}\to \mathit{Re\mathrm{\left(\mathit{s}\right)}}<2\:\mathrm{and}\:\mathit{Re\mathrm{\left(\mathit{s}\right)}}<5}$$

Therefore, the ROC of the Laplace transform of the given left sided signal is,

$$\mathrm{\mathrm{\left[\mathit{Re\mathrm{\left(\mathit{s}\right)}}<2\:\cap \:\mathit{Re\mathrm{\left(\mathit{s}\right)}}<5 \right ]}\:\mathrm{=}\:\mathit{Re\mathrm{\left(\mathit{s}\right)}}<2}$$

$$\mathrm{\Rightarrow \mathrm{ROC\to }\mathit{Re\mathrm{\left(\mathit{s}\right)}}<2}$$

The ROC of the left-sided signal $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ is shown in Figure-4. It is to be noted that the ROC extends to the left of the leftmost pole and no pole exists inside the ROC.

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements