- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Frequency Derivative Property of Fourier Transform
Fourier Transform
The Fourier transform of a continuous-time function can be defined as,
$$\mathrm{X(\omega)=\int_{−\infty }^{\infty}\:X(t)e^{-j\omega t}\:dt}$$
Differentiation in Frequency Domain Property of Fourier Transform
Statement − The frequency derivative property of Fourier transform states that the multiplication of a function X(t) by in time domain is equivalent to the differentiation of its Fourier transform in frequency domain. Therefore, if
$$\mathrm{X(t)\overset{FT}{\leftrightarrow}X(\omega)}$$
Then, according to frequency derivative property,
$$\mathrm{t\cdot x(t)\overset{FT}{\leftrightarrow}j\frac{d}{d\omega}X(\omega)}$$
Proof
From the definition of Fourier transform, we have,
$$\mathrm{X(\omega)=\int_{−\infty }^{\infty}x(t)e^{-j\omega t}\:dt}$$
Differentiating the above equation on both sides with respect to ω, we get,
$$\mathrm{\frac{d}{d\omega}X(\omega)=\frac{d}{d\omega}\left [ \int_{−\infty }^{\infty}x(t)e^{-j\omega t}\:dt \right ]}$$
$$\mathrm{\Rightarrow\:\frac{d}{d\omega}X(\omega)=\int_{−\infty }^{\infty} x(t)\frac{d}{d\omega}\left [e^{-j\omega t} \right ]dt}$$
$$\mathrm{\Rightarrow\:\frac{d}{d\omega}X(\omega)=\int_{−\infty }^{\infty} x(t)(-jt)e^{-j\omega t}dt}$$
$$\mathrm{\Rightarrow\:\frac{d}{d\omega}X(\omega)=-j\int_{−\infty }^{\infty}t\cdot x(t)e^{-j\omega t}dt=-jF[tx(t)]}$$
Therefore,
$$\mathrm{F[tx(t)]=j\frac{d}{d\omega}X(\omega)}$$
Or, it can be represented as
$$\mathrm{t\cdot x(t)\overset{FT}{\leftrightarrow}j\frac{d}{d\omega}X(\omega)}$$
Numerical Example
Using frequency derivative property of Fourier transform, find the Fourier transform of function $[te^{-2t}\:u(t)]$.
Solution
Given
$$\mathrm{x(t)=te^{-2t}u(t)}$$
Let,
$$\mathrm{x_{1}(t)=e^{-2t}u(t)}$$
By the definition of Fourier transform of a single sided exponential function, we have,
$$\mathrm{F[e^{-at}u(t)]=\frac{1}{a+j\omega}}$$
Therefore, for the function $X_{1}(t)$ , we have,
$$\mathrm{X_{1}(\omega)=F[e^{-2t}u(t)]=\frac{1}{2+j\omega}}$$
Now, by using the frequency derivative property $[i.e., t\cdot x(t)\overset{FT}{\leftrightarrow}j\frac{d}{d\omega}X(\omega)] $ of Fourier transform, we get,
$$\mathrm{F[te^{-2t}u(t)]=j\frac{d}{d\omega}F[e^{-2t}u(t)]}$$
$$\mathrm{\Rightarrow\:F[te^{-2t}u(t)]=j\frac{d}{d\omega}\left (\frac{1}{2+j\omega} \right )=j\frac{-1(j)}{(2+j\omega)^2}}$$
Therefore, the Fourier transform of the given function is,
$$\mathrm{F[te^{-2t}u(t)]=\frac{1}{(2+j\omega)^2}}$$
Or, it can also be written as,
$$\mathrm{te^{-2t}u(t)\overset{FT}{\leftrightarrow}\frac{1}{(2+j\omega)^2}}$$
- Related Articles
- Linearity and Frequency Shifting Property of Fourier Transform
- Differentiation in Frequency Domain Property of Discrete-Time Fourier Transform
- Modulation Property of Fourier Transform
- Time Differentiation Property of Fourier Transform
- Time Scaling Property of Fourier Transform
- Signals & Systems – Duality Property of Fourier Transform
- Convolution Property of Fourier Transform – Statement, Proof & Examples
- Signals and Systems – Multiplication Property of Fourier Transform
- Signals & Systems – Conjugation and Autocorrelation Property of Fourier Transform
- Signals and Systems – Time-Reversal Property of Fourier Transform
- Signals and Systems – Time-Shifting Property of Fourier Transform
- Signals and Systems – Time Integration Property of Fourier Transform
- Time Shifting and Frequency Shifting Properties of Discrete-Time Fourier Transform
- Time Convolution and Frequency Convolution Properties of Discrete-Time Fourier Transform
- Derivation of Fourier Transform from Fourier Series
