- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Frequency Convolution Theorem
Convolution
The convolution of two signals $\mathit{x\left ( t \right )}$ and $\mathit{h\left ( t \right )}$ is defined as,
$$\mathrm{\mathit{y\left(t\right)\mathrm{=}x\left(t\right)*h\left(t\right)\mathrm{=}\int_{-\infty }^{\infty}x\left(\tau\right)\:h\left(t-\tau\right)\:d\tau}}$$
This integral is also called the convolution integral.
Frequency Convolution Theorem
Statement - The frequency convolution theorem states that the multiplication of two signals in time domain is equivalent to the convolution of their spectra in the frequency domain.
Therefore, if the Fourier transform of two signals $\mathit{x_{\mathrm{1}}\left ( t \right )}$ and $\mathit{x_{\mathrm{2}}\left ( t \right )}$ is defined as
$$\mathrm{\mathit{x_{\mathrm{1}}\left(t\right)\overset{FT}{\leftrightarrow} X_{\mathrm{1}}\left(\omega\right)} }$$
And
$$\mathrm{\mathit{x_{\mathrm{2}}\left(t\right)\overset{FT}{\leftrightarrow} X_{\mathrm{2}}\left(\omega\right)}}$$
Then, according to the frequency convolution theorem,
$$\mathrm{\mathit{x_{\mathrm{1}}\left(t\right).x_{\mathrm{2}}\left(t\right)\overset{FT}{\leftrightarrow}\frac{\mathrm{1}}{\mathrm{2}\pi }\left [ X_{\mathrm{1}}\left(\omega\right)* X_{\mathrm{2}}\left(\omega\right)\right ]}}$$
Proof
From the definition of Fourier transform, we have,
$$\mathrm{\mathit{F\left [ x\left(t\right) \right ]\mathrm{=}X\left(\omega \right)=\int_{-\infty }^{\infty }x(t)e^{-j\omega t}\:dt}}$$
Therefore,
$$\mathrm{\mathit{F\left [ x_{\mathrm{1}}\left(t\right).x_{\mathrm{2}}\left(t\right) \right ]=\int_{-\infty }^{\infty }\left [ x_{\mathrm{1}}\left(t\right).x_{\mathrm{2}}\left(t\right) \right ]e^{-j\omega t}\:dt}}$$
Now, from the definition of inverse Fourier transform, we get,
$$\mathrm{\mathit{x\left(t\right)=F^{-\mathrm{1}}\left [X\left(\omega\right) \right ]=\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }X\left(\omega\right)e^{j\omega t}\:d\omega} }$$
$$\mathrm{\mathit{\therefore F\left [ x_{\mathrm{1}}\left(t\right).x_{\mathrm{2}}\left(t\right) \right ]=\int_{-\infty }^{\infty }\left [ \frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }X_{\mathrm{1}}(p) e^{jpt}\:dp\right ]x_{\mathrm{2}}\left(t\right)e^{-j\omega t}\:dt}}$$
By rearranging the order of integration, we get,
$$\mathrm{\mathit{F\left [ x_{\mathrm{1}}\left(t\right).x_{\mathrm{2}}\left(t\right) \right ]= \frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }X_{\mathrm{1}}\left(p\right)\left [ \int_{-\infty }^{\infty }x_{\mathrm{2}}\left(t\right)\:e^{-j\omega t}\:e^{jpt}\:dt\right ]dp}}$$
$$\mathrm{\mathit{\Rightarrow F\left [ x_{\mathrm{1}}\left(t\right).x_{\mathrm{2}}\left(t\right) \right ]= \frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }X_{\mathrm{1}}\left(p\right)\left [ \int_{-\infty }^{\infty }x_{\mathrm{2}}\left(t\right)\:e^{-j\left(\omega -p\right)t}\:dt\right ]dp }}$$
$$\mathrm{\mathit{\Rightarrow F\left [ x_{\mathrm{1}}\left(t\right).x_{\mathrm{2}}\left(t\right) \right ]= \frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }X_{\mathrm{1}}\left(p\right)X_{\mathrm{2}}\left(\omega -p\right)\:dp}}$$
Hence, by the definition of convolution, we can write the above expression as,
$$\mathrm{ \mathit{F\left [ x_{\mathrm{\mathrm{1}}}\left(t\right).x_{\mathrm{2}}\left(t\right) \right ]= \frac{\mathrm{1}}{\mathrm{2}\pi }\left [ X_{\mathrm{1}}\left(\omega\right) *X_{\mathrm{2}}\left(\omega\right)\right ]}}$$
Or, it can also be represented as,
$$\mathrm{\mathit{x_{\mathrm{1}}\left(t\right).x_{\mathrm{2}}\left(t\right)\overset{FT}{\leftrightarrow} \frac{\mathrm{1}}{\mathrm{2}\pi }\left [ X_{\mathrm{1}}\left(\omega\right) *X_{\mathrm{2}}\left(\omega\right)\right ]}}$$
This is the frequency convolution theorem in radian frequency. In terms of frequency, we can write it as,
$$\mathrm{\mathit{x_{\mathrm{1}}\left(t\right).x_{\mathrm{2}}\left(t\right)\overset{FT}{\leftrightarrow}X_{\mathrm{1}}\left(f\right)*X_{\mathrm{2}}\left(f\right);\:\:\left ( \because f=\frac{\omega }{\mathrm{2}\pi } \right )}}$$
- Related Articles
- Time Convolution Theorem
- Time Convolution and Frequency Convolution Properties of Discrete-Time Fourier Transform
- Convolution Property of Z-Transform
- Inverse Z-Transform by Convolution Method
- Carnots Theorem
- Convolution Property of Continuous-Time Fourier Series
- What is Convolution in Signals and Systems?
- Properties of Convolution in Signals and Systems
- Explain Superposition Theorem
- The PACELC theorem
- Convolution Property of Fourier Transform – Statement, Proof & Examples
- Signals and Systems – Relation between Convolution and Correlation
- Time Convolution and Multiplication Properties of Laplace Transform
- What is basic proportional theorem and convers of basic proportional theorem?
- Kirchoff's Theorem
