Fourier Transform of Unit Impulse Function, Constant Amplitude and Complex Exponential Function



Fourier Transform

The Fourier transform of a continuous-time function $x(t)$ can be defined as,

$$\mathrm{X(\omega)\:=\:\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt}$$

Fourier Transform of Unit Impulse Function

The unit impulse function is defined as,

$$\mathrm{\delta(t)\:=\:\begin{cases}1 \:\: for\:t\:=\:0 \\\\0 \:\: for\:t\: \neq\: 0 \end{cases}}$$

If it is given that

$$\mathrm{x(t)\:=\:\delta(t)}$$

Then, from the definition of Fourier transform, we have,

$$\mathrm{X(\omega)\:=\:\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt\:=\:\int_{-\infty}^{\infty}\delta(t)e^{-j\omega t}dt}$$

As the impulse function exists only at t= 0. Thus,

$$\mathrm{X(\omega)\:=\:\int_{-\infty}^{\infty}\delta(t) e^{-j\omega t}dt\:=\:\int_{-\infty}^{\infty}1 \:\cdot\: e^{-j\omega t}dt \:=\: e^{-j\omega t}|_{t \:=\:0}\:=\:1}$$

$$\mathrm{\therefore\:F[\delta(t)]\:=\:1\:\:or\:\:\delta(t) \overset{FT}{\leftrightarrow}1}$$

That is, the Fourier transform of a unit impulse function is unity.

The magnitude and phase representation of the Fourier transform of unit impulse function are as follows −

$$\mathrm{Magnitude,\:|X(\omega)|\:=\:1;\:\:for\:all\:\omega}$$

$$\mathrm{Phase,\:\angle X(\omega)\:=\:0;\:\:for\:all\:\omega}$$

The graphical representation of the impulse function with its magnitude and phase spectra are shown in the figure.

Fourier Transform of Unit Impulse Function

Fourier Transform of Constant Amplitude

If the function is given as

$$\mathrm{x(t)\:=\:1}$$

Then, the function $X(t)$ is a constant function and it is not absolutely integrable, hence its Fourier transform cannot be found directly. Therefore, the Fourier transform of $X(t)\:=\:1$ is determined through inverse Fourier transform of impulse function $[\delta(\omega)]$.

From the definition of inverse Fourier transform, we have,

$$\mathrm{x(t)\:=\:\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{j\omega t}d\omega}$$

Let

$$\mathrm{X(\omega)\:=\:\delta(\omega)}$$

Where,

$$\mathrm{\delta(\omega)\:=\:\begin{cases}1 \:\: for\:\omega\:=\:0 \\\\0 \:\: for\:\omega\: \neq\: 0\end{cases}}$$

$$\mathrm{\therefore\:x(t)\:=\:F^{-1}[X(\omega)]\:=\:F^{-1}[\delta(\omega)]}$$

$$\mathrm{\Rightarrow\:x(t)\:=\:x(t)\:=\:\frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega)e^{j\omega t}d\omega\:=\:\frac{1}{2\pi}\:\cdot\:(1)\:=\:\frac{1}{2\pi}}$$

$$\mathrm{\therefore\:F^{-1}[\delta(\omega)]\:=\:\frac{1}{2\pi}}$$

$$\mathrm{\Rightarrow\:F^{-1}[2\pi\delta(\omega)]\:=\:1}$$

Hence, the Fourier transform of a constant function is,

$$\mathrm{F[1]\:=\:2\pi\delta(\omega)\:or\:\:1\overset{FT}{\leftrightarrow}2\pi\delta(\omega)}$$

When the amplitude of the constant function is A, then the Fourier transform of the function becomes

$$\mathrm{A\overset{FT}{\leftrightarrow}2\pi A\delta(\omega)}$$

Fourier Transform of Complex Exponential Function

Consider the complex exponential function as,

$$\mathrm{x(t)\:=\:e^{j\omega_{0}t}}$$

The Fourier transform of a complex exponential function cannot be found directly. In order to find the Fourier transform of complex exponential function $x(t)$, consider finding the inverse Fourier transform of shifted impulse function in frequency domain $[\delta(\omega\:-\:\omega_{0})]$.

Let

$$\mathrm{X(\omega)\:=\:\delta(\omega\:-\:\omega_{0})}$$

Then, from the definition of inverse Fourier transform, we have,

$$\mathrm{x(t)\:=\:\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{j\omega t}d{\omega}}$$

$$\mathrm{\Rightarrow\:x(t)\:=\:F^{-1}[X(\omega)]\:=\:F^{-1}[\delta(\omega\:-\:\omega_{0})]}$$

$$\mathrm{\Rightarrow\:x(t)\:=\:\frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega\:-\:\omega_{0})e^{j\omega t}d{\omega}\:=\:\frac{1}{2\pi}e^{j\omega_{0} t}}$$

Therefore, the inverse Fourier transform of $\delta(\omega\:-\:\omega_{0})$ is,

$$\mathrm{F^{-1}[\delta(\omega\:-\:\omega_{0})]\:=\:\frac{1}{2\pi}e^{j\omega_{0} t}}$$

$$\mathrm{\Rightarrow\:F^{-1}[2\pi\delta(\omega\:-\:\omega_{0})]\:=\:e^{j\omega_{0} t}}$$

Hence, the Fourier transform of the complex exponential function is given by,

$$\mathrm{[e^{j\omega_{0} t}]\:=\:2\pi\delta(\omega\:-\:\omega_{0})}$$

Or, it can also be represented as,

$$\mathrm{e^{j\omega_{0} t}\overset{FT}{\leftrightarrow}2\pi\delta(\omega\:-\:\omega_{0})}$$

Advertisements