

- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Fourier Transform of Signum Function
Fourier Transform
The Fourier transform of a continuous-time function $x(t)$ can be defined as,
$$\mathrm{X(\omega)=\int_{−\infty}^{\infty}x(t)e^{-j\omega t}dt}$$
Fourier Transform of Signum Function
The signum function is represented by $sgn(t)$ and is defined as
$$\mathrm{sgn(t)=\begin{cases}1 & for\:t>0\-1 & for\:t<0 \end{cases}}$$
As the signum function is not absolutely integrable. Hence, its Fourier transform cannot be found directly. Therefore, to find the Fourier transform of the signum function, consider the function as given below.
$$\mathrm{x(t)=e^{-a|t|}sgn(t);\:\:a\rightarrow 0}$$
Therefore, the signum function can be obtained as,
$$\mathrm{x(t)=sgn(t)=\lim_{a\rightarrow \:0}e^{-a|t|}sgn(t)}$$
$$\mathrm{\Rightarrow\:x(t)=\lim_{a\rightarrow \:0}[e^{-at}u(t)-e^{at}u(-t)]}$$
From the definition of the Fourier transform, we have,
$$\mathrm{X(\omega)=\int_{−\infty}^{\infty}x(t)e^{-j\omega t}\:dt=\int_{−\infty}^{\infty}sgn(t)e^{-j\omega t}\:dt}$$
$$\mathrm{\Rightarrow\:X(\omega)=\int_{−\infty}^{\infty}\left(\lim_{a\rightarrow \:0}[e^{-at}u(t)-e^{at}u(-t)] \right)e^{-j\omega t}\:dt}$$
$$\mathrm{\Rightarrow\:X(\omega)=\lim_{a\rightarrow \:0}\left[\int_{−\infty}^{\infty}e^{-at}e^{-j\omega t}u(t)dt- \int_{−\infty}^{\infty}e^{at}e^{-j\omega t}u(-t)dt\right]}$$
$$\mathrm{\Rightarrow\:X(\omega)=\lim_{a\rightarrow \:0}\left[\int_{0}^{\infty}e^{-(a+j\omega)t}dt- \int_{−\infty}^{0}e^{(a-j\omega)t}dt\right]}$$
$$\mathrm{\Rightarrow\:X(\omega)=\lim_{a\rightarrow \:0}\left[\int_{0}^{\infty}e^{-(a+j\omega)t}dt- \int_{0}^{\infty}e^{-(a-j\omega)t}dt\right]}$$
$$\mathrm{\Rightarrow\:X(\omega)=\lim_{a\rightarrow \:0}\left\{\left[\frac{e^{-(a+j\omega)t}}{-(a+j\omega)}\right]_{0}^{\infty} -\left[\frac{e^{-(a-j\omega)t}}{-(a-j\omega)}\right]_{0}^{\infty}\right \}}$$
$$\mathrm{\Rightarrow\:X(\omega)=\lim_{a\rightarrow \:0}\left\{\left[\frac{e^{-\infty}-e^{0}}{-(a+j\omega)} \right]- \left[\frac{e^{-\infty}-e^{0}}{-(a-j\omega)} \right] \right\}}$$
$$\mathrm{=\lim_{a\rightarrow \:0}\left[ \frac{1}{(a+j\omega)}-\frac{1}{(a-j\omega)}\right]}$$
On solving the limits, we get,
$$\mathrm{\Rightarrow\:X(\omega)=\frac{1}{j\omega}-\frac{1}{(-j\omega)}=\frac{2}{j\omega}}$$
Therefore, the Fourier transform of the signum function is,
$$\mathrm{X(\omega)=F[sgn(t)]=\frac{2}{j\omega}}$$
Or, it can also be represented as,
$$\mathrm{sgn(t)\overset{FT}{\leftrightarrow}\frac{2}{j\omega}}$$
The magnitude and phase representation of Fourier transform of the Signum function −
$$\mathrm{Magnitude, |X(\omega)| =\sqrt{0+\left(\frac{2}{\omega}\right)^{2}}=\frac{2}{\omega};\:\:for\:all\:\omega}$$
$$\mathrm{Phase,\angle\:X(\omega) =\begin{cases}\frac{\pi}{2}; & for\:\omega<0 \ -\frac{\pi}{2}; & for\:\omega>0 \end{cases}}$$
The graphical representation of the signum function with its magnitude and phase spectra is shown in the figure below.
- Related Questions & Answers
- Fourier Transform of Rectangular Function
- Fourier Transform of Unit Step Function
- Derivation of Fourier Transform from Fourier Series
- Modulation Property of Fourier Transform
- Fourier Transform of Unit Impulse Function, Constant Amplitude and Complex Exponential Function
- Difference between Fourier Series and Fourier Transform
- Frequency Derivative Property of Fourier Transform
- Time Differentiation Property of Fourier Transform
- Fourier Transform of a Triangular Pulse
- Time Scaling Property of Fourier Transform
- Fourier Transform of a Gaussian Signal
- Discrete-Time Fourier Transform
- Difference between Laplace Transform and Fourier Transform
- Relation between Laplace Transform and Fourier Transform
- Properties of Continuous-Time Fourier Transform (CTFT)