- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Direct Form-II Realization of Continuous-Time Systems
Realization of Continuous-Time System
Realisation of a continuous-time LTI system means obtaining a network corresponding to the differential equation or transfer function of the system.
The transfer function of the system can be realised either by using integrators or differentiators. Due to certain drawbacks, the differentiators are not used to realise the practical systems. Therefore, only integrators are used for the realization of continuous-time systems. The adder and multipliers are other two elements which are used realise the continuous-time systems.
Direct Form-II Realization of CT Systems
The advantage of the direct form-II realization of continuous-time systems is that it uses minimum number of integrators. In this realization structure, an intermediate variable is integrated, instead of using the separate integrators for integrating the input and output variables separately.
The direct form-II realization of continuous-time systems is explained in the following example −
Numerical Example
Using the direct form-II, realise the continuous-time LTI system described by the following transfer function.
$$\mathrm{\mathit{H\left ( s \right )\mathrm{\,=\,}\frac{Y\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{s^{\mathrm{2}}\mathrm{\,+\,}\mathrm{2}s\mathrm{\,+\,}\mathrm{3}}{s^{\mathrm{2}}\mathrm{\,+\,}\mathrm{2}s\mathrm{\,+\,}\mathrm{5}}}}$$
Solution
The given function is to be expressed in the negative powers of s as −
$$\mathrm{\mathit{H\left ( s \right )\mathrm{\,=\,}\frac{Y\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{s^{\mathrm{2}}\mathrm{\,+\,}\mathrm{2}s\mathrm{\,+\,}\mathrm{3}}{s^{\mathrm{2}}\mathrm{\,+\,}\mathrm{2}s\mathrm{\,+\,}\mathrm{5}}\mathrm{\,=\,}\frac{\mathrm{1}\mathrm{\,+\,}\mathrm{2}s^{\mathrm{-1}}\mathrm{\,+\,}\mathrm{3}s^{\mathrm{-2}}}{\mathrm{1}\mathrm{\,+\,}\mathrm{2}s^{\mathrm{-1}}\mathrm{\,+\,}\mathrm{5}s^{\mathrm{-2}}} }}$$
Let A(s) = 1, then decomposing the given transfer function into two parts as −
$$\mathrm{\mathit{H\left ( s \right )\mathrm{\,=\,}\frac{Y\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{Y\left ( s \right )}{A\left ( s \right )}\frac{A\left ( s \right )}{X\left ( s \right )}}}$$
Where,
$$\mathrm{\mathit{\frac{Y\left ( s \right )}{A\left ( s \right )}\mathrm{\,=\,}\mathrm{1}\mathrm{\,+\,}\mathrm{2}s^{\mathrm{-1}}\mathrm{\,+\,}\mathrm{3}s^{\mathrm{-2}}\; \; \; \cdot \cdot \cdot \left ( \mathrm{1} \right )}}$$
And
$$\mathrm{\mathit{\frac{A\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{\mathrm{1}}{\mathrm{1}\mathrm{\,+\,}\mathrm{2}s^{\mathrm{-1}}\mathrm{\,+\,}\mathrm{5}s^{\mathrm{-2}}}\; \; \; \cdot \cdot \cdot \left ( \mathrm{2} \right )}}$$
Cross multiplying the eq. (1) & eq. (2), we get,
From eq. (1),
$$\mathrm{\mathit{Y\left ( s \right )\mathrm{\,=\,}A\left ( s \right )\mathrm{\,+\,}\mathrm{2}s^{\mathrm{-1}}A\left ( s \right )\mathrm{\,+\,}\mathrm{3}s^{\mathrm{-2}}A\left ( s \right )}}$$
And from eq. (2),
$$\mathrm{\mathit{X\left ( s \right )\mathrm{\,=\,}A\left ( s \right )\mathrm{\,+\,}\mathrm{2}s^{\mathrm{-1}}A\left ( s \right )\mathrm{\,+\,}\mathrm{5}s^{\mathrm{-2}}A\left ( s \right )}}$$
$$\mathrm{\mathit{\Rightarrow A\left ( s \right )\mathrm{\,=\,}X\left ( s \right )-\mathrm{2}s^{\mathrm{-1}}A\left ( s \right )-\mathrm{5}s^{\mathrm{-2}}A\left ( s \right )}}$$
Therefore, the above transfer function can be realised as follows −
Step 1
Realising A(s) as −
Step 2
Realising Y(s) as −
Step 3
By combining the above two realisations, we get the direct form-II realisation of the transfer function H(s) as −
- Related Articles
- Direct Form-I Realization of Continuous-Time Systems
- Cascade Form Realization of Continuous-Time Systems
- Parallel Form Realization of Continuous-Time Systems
- Signals & Systems – Properties of Continuous Time Fourier Series
- Basic Elements to Construct the Block-Diagram of Continuous-Time Systems
- Signals and Systems – Causality and Paley-Wiener Criterion for Physical Realization
- Continuous-Time Vs Discrete-Time Sinusoidal Signal
- Signals and Systems: Time Variant and Time-Invariant Systems
- Properties of Continuous-Time Fourier Transform (CTFT)
- Convolution Property of Continuous-Time Fourier Series
- Time Shifting, Time Reversal, and Time Scaling Properties of Continuous-Time Fourier Series
- Time Differentiation and Integration Properties of Continuous-Time Fourier Series
- Using direct IO with ecryptfs and similar stackable file systems
- Signals and Systems: Linear Time-Invariant Systems
- Signals and Systems – Properties of Linear Time-Invariant (LTI) Systems
