- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Analysis of LTI System with Fourier Transform
For a continuous-time function 𝑥(𝑡), the Fourier transform of 𝑥(𝑡) can be defined as,
$$\mathrm{X\left ( \omega \right )=\int_{-\infty }^{\infty }x\left ( t \right )e^{-j\omega t}dt}$$
System Analysis with Fourier Transform
Consider an LTI (Linear Time-Invariant) system, which is described by the differential equation as,
$$\mathrm{\sum_{k=0}^{N}a_{k}\frac{\mathrm{d}^{k}y\left ( t \right ) }{\mathrm{d} t^{k}}=\sum_{k=0}^{M}b_{k}\frac{\mathrm{d}^{k}x\left ( t \right ) }{\mathrm{d} t^{k}}}$$
Taking Fourier transform on both sides of the above equation, we get,
$$\mathrm{F\left [ \sum_{k=0}^{N}a_{k}\frac{\mathrm{d}^{k}y\left ( t \right ) }{\mathrm{d} t^{k}} \right ]=F\left [ \sum_{k=0}^{M}b_{k}\frac{\mathrm{d}^{k}x\left ( t \right ) }{\mathrm{d} t^{k}} \right ]}$$
By using linearity property $\mathrm{\left [ i.e.,\: ax_{1}\left ( t \right )+bx_{2}\left ( t \right )\overset{FT}{\leftrightarrow}aX_{1}\left ( \omega \right )+bX_{2}\left ( \omega \right ) \right ] }$ of Fourier transform, we get,
$$\mathrm{\sum_{k=0}^{N}a_{k}F\left [ \frac{\mathrm{d}^{k}y\left ( t \right ) }{\mathrm{d} t^{k}} \right ]=\sum_{k=0}^{M}b_{k}F\left [ \frac{\mathrm{d}^{k}x\left ( t \right ) }{\mathrm{d} t^{k}} \right ]}$$
Now, by using time differentiation property $\mathrm{\left [ i.e.,\frac{\mathrm{d} x\left ( t \right )}{\mathrm{d} t}\overset{FT}{\leftrightarrow}j\omega X\left ( \omega \right ) \right ] }$ of Fourier transform, we get,
$$\mathrm{\sum_{k=0}^{N}a_{k}\left ( j\omega \right )^{k}Y\left ( \omega \right )=\sum_{k=0}^{M}b_{k}\left ( j\omega \right )^{k}X\left ( \omega \right )}$$
$$\mathrm{\Rightarrow Y\left ( \omega \right )\sum_{k=0}^{N}a_{k}\left ( j\omega \right )^{k}=X\left ( \omega \right )\sum_{k=0}^{M}b_{k}\left ( j\omega \right )^{k}}$$
Therefore, the transfer function of the given LTI system is,
$$\mathrm{H\left ( \omega \right )=\frac{Y\left ( \omega \right )}{X\left ( \omega \right )}=\frac{\sum_{k=0}^{M}b_{k}\left ( j\omega \right )^{k}}{\sum_{k=0}^{N}a_{k}\left ( j\omega \right )^{k}}}$$
Here, 𝐻(𝜔) is known as frequency response of the LTI System.
Now, when the impulse input is applied to the system, i.e.,
$$\mathrm{x\left ( t \right )=\delta \left ( t \right )}$$
Then,
$$\mathrm{X\left ( \omega \right )=1\; and\; Y\left ( \omega \right )=H\left ( \omega \right )}$$
Also,
$$\mathrm{F^{-1}\left [ H\left ( \omega \right ) \right ]=h\left ( t \right )}$$
Here, the ℎ(𝑡) is called the impulse response of the LTI system. The Fourier transform of the impulse response is called the frequency response or transfer function of the system.
The frequency response of the system is represented as,
$$\mathrm{H\left ( \omega \right )=\left | H\left ( \omega \right ) \right |e^{j\angle H\left ( \omega \right )}}$$
Where,
$\mathrm{\left | H\left ( \omega \right ) \right |}$ is called the magnitude response of the system, and
$\mathrm{e^{j\angle H\left ( \omega \right )}}$ is known as phase response of the system.
- Related Articles
- Transform Analysis of LTI Systems using Z-Transform
- Derivation of Fourier Transform from Fourier Series
- Circuit Analysis with Laplace Transform
- Modulation Property of Fourier Transform
- Fourier Transform of Rectangular Function
- Fourier Transform of Signum Function
- Difference between Fourier Series and Fourier Transform
- Discrete-Time Fourier Transform
- Difference between Laplace Transform and Fourier Transform
- Relation between Laplace Transform and Fourier Transform
- Fourier Transform of Unit Step Function
- Frequency Derivative Property of Fourier Transform
- Time Differentiation Property of Fourier Transform
- Fourier Transform of a Triangular Pulse
- Time Scaling Property of Fourier Transform
