- Statistics Tutorial
- Home
- Adjusted R-Squared
- Analysis of Variance
- Arithmetic Mean
- Arithmetic Median
- Arithmetic Mode
- Arithmetic Range
- Bar Graph
- Best Point Estimation
- Beta Distribution
- Binomial Distribution
- Black-Scholes model
- Boxplots
- Central limit theorem
- Chebyshev's Theorem
- Chi-squared Distribution
- Chi Squared table
- Circular Permutation
- Cluster sampling
- Cohen's kappa coefficient
- Combination
- Combination with replacement
- Comparing plots
- Continuous Uniform Distribution
- Continuous Series Arithmetic Mean
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mode
- Cumulative Frequency
- Co-efficient of Variation
- Correlation Co-efficient
- Cumulative plots
- Cumulative Poisson Distribution
- Data collection
- Data collection - Questionaire Designing
- Data collection - Observation
- Data collection - Case Study Method
- Data Patterns
- Deciles Statistics
- Discrete Series Arithmetic Mean
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mode
- Dot Plot
- Exponential distribution
- F distribution
- F Test Table
- Factorial
- Frequency Distribution
- Gamma Distribution
- Geometric Mean
- Geometric Probability Distribution
- Goodness of Fit
- Grand Mean
- Gumbel Distribution
- Harmonic Mean
- Harmonic Number
- Harmonic Resonance Frequency
- Histograms
- Hypergeometric Distribution
- Hypothesis testing
- Individual Series Arithmetic Mean
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mode
- Interval Estimation
- Inverse Gamma Distribution
- Kolmogorov Smirnov Test
- Kurtosis
- Laplace Distribution
- Linear regression
- Log Gamma Distribution
- Logistic Regression
- Mcnemar Test
- Mean Deviation
- Means Difference
- Multinomial Distribution
- Negative Binomial Distribution
- Normal Distribution
- Odd and Even Permutation
- One Proportion Z Test
- Outlier Function
- Permutation
- Permutation with Replacement
- Pie Chart
- Poisson Distribution
- Pooled Variance (r)
- Power Calculator
- Probability
- Probability Additive Theorem
- Probability Multiplecative Theorem
- Probability Bayes Theorem
- Probability Density Function
- Process Capability (Cp) & Process Performance (Pp)
- Process Sigma
- Quadratic Regression Equation
- Qualitative Data Vs Quantitative Data
- Quartile Deviation
- Range Rule of Thumb
- Rayleigh Distribution
- Regression Intercept Confidence Interval
- Relative Standard Deviation
- Reliability Coefficient
- Required Sample Size
- Residual analysis
- Residual sum of squares
- Root Mean Square
- Sample planning
- Sampling methods
- Scatterplots
- Shannon Wiener Diversity Index
- Signal to Noise Ratio
- Simple random sampling
- Skewness
- Standard Deviation
- Standard Error ( SE )
- Standard normal table
- Statistical Significance
- Statistics Formulas
- Statistics Notation
- Stem and Leaf Plot
- Stratified sampling
- Student T Test
- Sum of Square
- T-Distribution Table
- Ti 83 Exponential Regression
- Transformations
- Trimmed Mean
- Type I & II Error
- Variance
- Venn Diagram
- Weak Law of Large Numbers
- Z table
- Statistics Useful Resources
- Statistics - Discussion

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

A simple random sample is defined as one in which each element of the population has an equal and independent chance of being selected. In case of a population with N units, the probability of choosing n sample units, with all possible combinations of N_{Cn} samples is given by 1/N_{Cn} e.g. If we have a population of five elements (A, B, C, D, E) i.e. N 5, and we want a sample of size n = 3, then there are 5_{C3} = 10 possible samples and the probability of any single unit being a member of the sample is given by 1/10.

Simple random sampling can be done in two different ways i.e. 'with replacement' or 'without replacement'. When the units are selected into a sample successively after replacing the selected unit before the next draw, it is a simple random sample with replacement. If the units selected are not replaced before the next draw and drawing of successive units are made only from the remaining units of the population, then it is termed as simple random sample without replacement. Thus in the former method a unit once selected may be repeated, whereas in the latter a unit once selected is not repeated. Due to more statistical efficiency associated with a simple random sample without replacement it is the preferred method.

A simple random sample can be drawn through either of the two procedures i.e. through lottery method or through random number tables.

**Lottery Method**- Under this method units are selected on the basis of random draws. Firstly each member or element of the population is assigned a unique number. In the next step these numbers are written on separate cards which are physically similar in shape, size, color etc. Then they are placed in a basket and thoroughly mixed. In the last step the slips are taken out randomly without looking at them. The number of slips drawn is equal to the sample size required.Lottery method suffers from few drawbacks. The process of writing N number of slips is cumbersome and shuffling a large number of slips, where population size is very large, is difficult. Also human bias may enter while choosing the slips. Hence the other alternative i.e. random numbers can be used.

**Random Number Tables Method**- These consist of columns of numbers which have been randomly prepared. Number of random tables are available e.g. Fisher and Yates Tables, Tippets random number etc. Listed below is a sequence of two digited random numbers from Fisher & Yates table:61, 44, 65, 22, 01, 67, 76, 23, 57, 58, 54, 11, 33, 86, 07, 26, 75, 76, 64, 22, 19, 35, 74, 49, 86, 58, 69, 52, 27, 34, 91, 25, 34, 67, 76, 73, 27, 16, 53, 18, 19, 69, 32, 52, 38, 72, 38, 64, 81, 79 and 38.

The first step involves assigning a unique number to each member of the population e.g. if the population comprises of 20 people then all individuals are numbered from 01 to 20. If we are to collect a sample of 5 units then referring to the random number tables 5 double digit numbers are chosen. E.g. using the above table the units having the following five numbers will form a sample: 01, 11, 07, 19 and 16. If the sampling is without replacement and a particular random number repeats itself then it will not be taken again and the next number that fits our criteria will be chosen.

Thus a simple random sample can be drawn using either of the two procedures. However in practice, it has been seen that simple random sample involves lots of time and effort and is impractical.

Advertisements