- Statistics Tutorial
- Home
- Adjusted R-Squared
- Analysis of Variance
- Arithmetic Mean
- Arithmetic Median
- Arithmetic Mode
- Arithmetic Range
- Bar Graph
- Best Point Estimation
- Beta Distribution
- Binomial Distribution
- Black-Scholes model
- Boxplots
- Central limit theorem
- Chebyshev's Theorem
- Chi-squared Distribution
- Chi Squared table
- Circular Permutation
- Cluster sampling
- Cohen's kappa coefficient
- Combination
- Combination with replacement
- Comparing plots
- Continuous Uniform Distribution
- Continuous Series Arithmetic Mean
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mode
- Cumulative Frequency
- Co-efficient of Variation
- Correlation Co-efficient
- Cumulative plots
- Cumulative Poisson Distribution
- Data collection
- Data collection - Questionaire Designing
- Data collection - Observation
- Data collection - Case Study Method
- Data Patterns
- Deciles Statistics
- Discrete Series Arithmetic Mean
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mode
- Dot Plot
- Exponential distribution
- F distribution
- F Test Table
- Factorial
- Frequency Distribution
- Gamma Distribution
- Geometric Mean
- Geometric Probability Distribution
- Goodness of Fit
- Grand Mean
- Gumbel Distribution
- Harmonic Mean
- Harmonic Number
- Harmonic Resonance Frequency
- Histograms
- Hypergeometric Distribution
- Hypothesis testing
- Individual Series Arithmetic Mean
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mode
- Interval Estimation
- Inverse Gamma Distribution
- Kolmogorov Smirnov Test
- Kurtosis
- Laplace Distribution
- Linear regression
- Log Gamma Distribution
- Logistic Regression
- Mcnemar Test
- Mean Deviation
- Means Difference
- Multinomial Distribution
- Negative Binomial Distribution
- Normal Distribution
- Odd and Even Permutation
- One Proportion Z Test
- Outlier Function
- Permutation
- Permutation with Replacement
- Pie Chart
- Poisson Distribution
- Pooled Variance (r)
- Power Calculator
- Probability
- Probability Additive Theorem
- Probability Multiplecative Theorem
- Probability Bayes Theorem
- Probability Density Function
- Process Capability (Cp) & Process Performance (Pp)
- Process Sigma
- Quadratic Regression Equation
- Qualitative Data Vs Quantitative Data
- Quartile Deviation
- Range Rule of Thumb
- Rayleigh Distribution
- Regression Intercept Confidence Interval
- Relative Standard Deviation
- Reliability Coefficient
- Required Sample Size
- Residual analysis
- Residual sum of squares
- Root Mean Square
- Sample planning
- Sampling methods
- Scatterplots
- Shannon Wiener Diversity Index
- Signal to Noise Ratio
- Simple random sampling
- Skewness
- Standard Deviation
- Standard Error ( SE )
- Standard normal table
- Statistical Significance
- Statistics Formulas
- Statistics Notation
- Stem and Leaf Plot
- Stratified sampling
- Student T Test
- Sum of Square
- T-Distribution Table
- Ti 83 Exponential Regression
- Transformations
- Trimmed Mean
- Type I & II Error
- Variance
- Venn Diagram
- Weak Law of Large Numbers
- Z table
- Statistics Useful Resources
- Statistics - Discussion

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

**Cohen's kappa coefficient** is a statistic which measures inter-rater agreement for qualitative (categorical) items. It is generally thought to be a more robust measure than simple percent agreement calculation, since k takes into account the agreement occurring by chance. Cohen's kappa measures the agreement between two raters who each classify N items into C mutually exclusive categories.

Cohen's kappa coefficient is defined and given by the following function −

${k = \frac{p_0 - p_e}{1-p_e} = 1 - \frac{1-p_o}{1-p_e}}$

Where −

${p_0}$ = relative observed agreement among raters.

${p_e}$ = the hypothetical probability of chance agreement.

${p_0}$ and ${p_e}$ are computed using the observed data to calculate the probabilities of each observer randomly saying each category. If the raters are in complete agreement then ${k}$ = 1. If there is no agreement among the raters other than what would be expected by chance (as given by ${p_e}$), ${k}$ ≤ 0.

**Problem Statement** −

Suppose that you were analyzing data related to a group of 50 people applying for a grant. Each grant proposal was read by two readers and each reader either said "Yes" or "No" to the proposal. Suppose the disagreement count data were as follows, where A and B are readers, data on the diagonal slanting left shows the count of agreements and the data on the diagonal slanting right, disagreements −

B | |||
---|---|---|---|

Yes | No | ||

A | Yes | 20 | 5 |

No | 10 | 15 |

Calculate Cohen's kappa coefficient.

**Solution** −

Note that there were 20 proposals that were granted by both reader A and reader B and 15 proposals that were rejected by both readers. Thus, the observed proportionate agreement is

${p_0 = \frac{20+15}{50} = 0.70}$

To calculate ${p_e}$ (the probability of random agreement) we note that −

Reader A said "Yes" to 25 applicants and "No" to 25 applicants. Thus reader A said "Yes" 50% of the time.

Reader B said "Yes" to 30 applicants and "No" to 20 applicants. Thus reader B said "Yes" 60% of the time.

Using formula P(A and B) = P(A) x P(B) where P is probability of event occuring.

The probability that both of them would say "Yes" randomly is 0.50 x 0.60 = 0.30 and the probability that both of them would say "No" is 0.50 x 0.40 = 0.20. Thus the overall probability of random agreement is ${p_e}$ = 0.3 + 0.2 = 0.5.

So now applying our formula for Cohen's Kappa we get:

${k = \frac{p_0 - p_e}{1-p_e} = \frac{0.70 - 0.50}{1-0.50} = 0.40}$

Advertisements