Statistics - Laplace Distribution


Advertisements

Laplace distribution represents the distribution of differences between two independent variables having identical exponential distributions. It is also called double exponential distribution.

Laplace distribution

Probability density function

Probability density function of Laplace distribution is given as:

Formula

${ L(x | \mu, b) = \frac{1}{2b} e^{- \frac{| x - \mu |}{b}} }$
$ { = \frac{1}{2b} } $ $ \begin {cases} e^{- \frac{x - \mu}{b}}, & \text{if $x \lt \mu $} \\[7pt] e^{- \frac{\mu - x}{b}}, & \text{if $x \ge \mu $} \end{cases} $

Where −

  • ${\mu}$ = location parameter.

  • ${b}$ = scale parameter and is > 0.

  • ${x}$ = random variable.

Cumulative distribution function

Cumulative distribution function of Laplace distribution is given as:

Formula

${ D(x) = \int_{- \infty}^x}$

$ = \begin {cases} \frac{1}{2}e^{\frac{x - \mu}{b}}, & \text{if $x \lt \mu $} \\[7pt] 1- \frac{1}{2}e^{- \frac{x - \mu}{b}}, & \text{if $x \ge \mu $} \end{cases} $
$ { = \frac{1}{2} + \frac{1}{2}sgn(x - \mu)(1 - e^{- \frac{| x - \mu |}{b}}) } $

Where −

  • ${\mu}$ = location parameter.

  • ${b}$ = scale parameter and is > 0.

  • ${x}$ = random variable.

Useful Video Courses

Video

Class 11th Statistics for Economics

40 Lectures 3.5 hours

Madhu Bhatia

Video

Statistics

40 Lectures 2 hours

Megha Aggarwal

Video

Applied Statistics in Python for Machine Learning Engineers

66 Lectures 1.5 hours

Mike West

Video

An Introduction to Wait Statistics in SQL Server

22 Lectures 1 hours

Mike West

Video

Geospatial Data Science: Statistics and Machine Learning

60 Lectures 12 hours

Michael Miller

Video

Basic Statistics & Regression for Machine Learning in Python

65 Lectures 5 hours

Abhilash Nelson

Advertisements