- Statistics Tutorial
- Home
- Adjusted R-Squared
- Analysis of Variance
- Arithmetic Mean
- Arithmetic Median
- Arithmetic Mode
- Arithmetic Range
- Bar Graph
- Best Point Estimation
- Beta Distribution
- Binomial Distribution
- Black-Scholes model
- Boxplots
- Central limit theorem
- Chebyshev's Theorem
- Chi-squared Distribution
- Chi Squared table
- Circular Permutation
- Cluster sampling
- Cohen's kappa coefficient
- Combination
- Combination with replacement
- Comparing plots
- Continuous Uniform Distribution
- Cumulative Frequency
- Co-efficient of Variation
- Correlation Co-efficient
- Cumulative plots
- Cumulative Poisson Distribution
- Data collection
- Data collection - Questionaire Designing
- Data collection - Observation
- Data collection - Case Study Method
- Data Patterns
- Deciles Statistics
- Dot Plot
- Exponential distribution
- F distribution
- F Test Table
- Factorial
- Frequency Distribution
- Gamma Distribution
- Geometric Mean
- Geometric Probability Distribution
- Goodness of Fit
- Grand Mean
- Gumbel Distribution
- Harmonic Mean
- Harmonic Number
- Harmonic Resonance Frequency
- Histograms
- Hypergeometric Distribution
- Hypothesis testing
- Interval Estimation
- Inverse Gamma Distribution
- Kolmogorov Smirnov Test
- Kurtosis
- Laplace Distribution
- Linear regression
- Log Gamma Distribution
- Logistic Regression
- Mcnemar Test
- Mean Deviation
- Means Difference
- Multinomial Distribution
- Negative Binomial Distribution
- Normal Distribution
- Odd and Even Permutation
- One Proportion Z Test
- Outlier Function
- Permutation
- Permutation with Replacement
- Pie Chart
- Poisson Distribution
- Pooled Variance (r)
- Power Calculator
- Probability
- Probability Additive Theorem
- Probability Multiplecative Theorem
- Probability Bayes Theorem
- Probability Density Function
- Process Capability (Cp) & Process Performance (Pp)
- Process Sigma
- Quadratic Regression Equation
- Qualitative Data Vs Quantitative Data
- Quartile Deviation
- Range Rule of Thumb
- Rayleigh Distribution
- Regression Intercept Confidence Interval
- Relative Standard Deviation
- Reliability Coefficient
- Required Sample Size
- Residual analysis
- Residual sum of squares
- Root Mean Square
- Sample planning
- Sampling methods
- Scatterplots
- Shannon Wiener Diversity Index
- Signal to Noise Ratio
- Simple random sampling
- Skewness
- Standard Deviation
- Standard Error ( SE )
- Standard normal table
- Statistical Significance
- Statistics Formulas
- Statistics Notation
- Stem and Leaf Plot
- Stratified sampling
- Student T Test
- Sum of Square
- T-Distribution Table
- Ti 83 Exponential Regression
- Transformations
- Trimmed Mean
- Type I & II Error
- Variance
- Venn Diagram
- Weak Law of Large Numbers
- Z table
- Statistics Useful Resources
- Statistics - Discussion

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

Sign to-commotion proportion (contracted SNR) is a measure utilized as a part of science and designing that analyzes the level of a coveted sign to the level of foundation clamor. It is characterized as the proportion of sign energy to the clamor power, regularly communicated in decibels. A proportion higher than 1:1 (more prominent than 0 dB) shows more flag than clamor. While SNR is regularly cited for electrical signs, it can be connected to any type of sign, (for example, isotope levels in an ice center or biochemical motioning between cells).

Signal-to-noise ratio is defined as the ratio of the power of a signal (meaningful information) and the power of background noise (unwanted signal):

${SNR = \frac{P_{signal}}{P_{noise}}}$

If the variance of the signal and noise are known, and the signal is zero:

${SNR = \frac{\sigma^2_{signal}}{\sigma^2_{noise}}}$

If the signal and the noise are measured across the same impedance, then the SNR can be obtained by calculating the square of the amplitude ratio:

${SNR = \frac{P_{signal}}{P_{noise}} = {(\frac{A_{signal}}{A_{noise}})}^2} $

Where A is root mean square (RMS) amplitude (for example, RMS voltage).

Because many signals have a very wide dynamic range, signals are often expressed using the logarithmic decibel scale. Based upon the definition of decibel, signal and noise may be expressed in decibels (dB) as

${P_{signal,dB} = 10log_{10}(P_{signal})} $

and

${P_{noise,dB} = 10log_{10}(P_{noise})} $

In a similar manner, SNR may be expressed in decibels as

${SNR_{dB} = 10log_{10}(SNR)} $

Using the definition of SNR

${SNR_{dB} = 10log_{10}(\frac{P_{signal}}{P_{noise}})} $

Using the quotient rule for logarithms

${10log_{10}(\frac{P_{signal}}{P_{noise}}) = 10log_{10}(P_{signal}) - 10log_{10}(P_{noise})} $

Substituting the definitions of SNR, signal, and noise in decibels into the above equation results in an important formula for calculating the signal to noise ratio in decibels, when the signal and noise are also in decibels:

${SNR_{dB} = P_{signal,dB} - P_{noise,dB}} $

In the above formula, P is measured in units of power, such as Watts or mill watts, and signal-to-noise ratio is a pure number.

However, when the signal and noise are measured in Volts or Amperes, which are measures of amplitudes, they must be squared to be proportionate to power as shown below:

${SNR_{dB} = 10log_{10}[{(\frac{A_{signal}}{A_{noise}})}^2] \\[7pt]
= 20log_{10}(\frac{A_{signal}}{A_{noise}}) \\[7pt]
= A_{signal,dB} - A_{noise,dB}} $

**Problem Statement:**

Compute the SNR of a 2.5 kHz sinusoid sampled at 48 kHz. Add white noise with standard deviation 0.001. Set the random number generator to the default settings for reproducible results.

**Solution:**

${ F_i = 2500; F_s = 48e3; N = 1024; \\[7pt]
x = sin(2 \times pi \times \frac{F_i}{F_s} \times (1:N)) + 0.001 \times randn(1,N); \\[7pt]
SNR = snr(x,Fs) \\[7pt]
SNR = 57.7103}$

Advertisements