Found 757 Articles for Digital Electronics

Signals and Systems – Properties of Discrete-Time Fourier Transform

Manish Kumar Saini
Updated on 11-Jan-2022 05:16:23

31K+ Views

Discrete Time Fourier TransformThe discrete time Fourier transform is a mathematical tool which is used to convert a discrete time sequence into the frequency domain. Therefore, the Fourier transform of a discrete time signal or sequence is called the discrete time Fourier transform (DTFT).Mathematically, if $\mathit{x}\mathrm{\left(\mathit{n}\right)}$ is a discrete time sequence, then the discrete time Fourier transform of the sequence is defined as −$$\mathrm{\mathit{F}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{\omega }\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty }}^{\infty }\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{e}^{-\mathit{j\omega n}}}$$Properties of Discrete-Time Fourier TransformFollowing table gives the important properties of the discrete-time Fourier transform −PropertyDiscrete-Time SequenceDTFTNotation$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}}$$\mathrm{\mathit{X}\mathrm{\left(\mathit{\omega}\right)}}$$\mathrm{\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{n}\right)}}$$\mathrm{\mathit{X}_{\mathrm{1}}\mathrm{\left(\mathit{\omega}\right)}}$$\mathrm{\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{n}\right)}}$$\mathrm{\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{\omega}\right)}}$Linearity$\mathrm{\mathit{a}\mathit{x}_{\mathrm{1}}\mathrm{\left( \mathit{n}\right)}\:\mathrm{+}\:\mathit{b}\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{n}\right)}}$$\mathrm{\mathit{a}\mathit{X}_{\mathrm{1}}\mathrm{\left( \mathit{\omega }\right)}\:\mathrm{+}\:\mathit{b}\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{\omega}\right)}}$Time Shifting$\mathrm{\mathit{x}\mathrm{\left(\mathit{n-k}\right)}}$$\mathrm{\mathit{e}^{\mathit{-j\omega k}}\mathit{X}\mathrm{\left(\mathit{\omega }\right)}}$Frequency Shifting$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{e}^{\mathit{j\omega} _{\mathrm{0}}\mathit{n}}}$$\mathrm{\mathit{X}\mathrm{\left(\mathit{\omega -\omega _{\mathrm{0}}}\right)}}$Time Reversal$\mathrm{\mathit{x}\mathrm{\left(\mathit{-n}\right)}}$$\mathrm{\mathit{X}\mathrm{\left(\mathit{-\omega}\right)}}$Frequency Differentiation$\mathrm{\mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)}}$$\mathrm{\mathit{j}\frac{\mathit{d}}{\mathit{d\omega}}\mathit{X}\mathrm{\left(\mathit{\omega }\right)}}$Time Convolution$\mathrm{\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{n}\right)}\:*\:\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{n}\right)}}$$\mathrm{\mathit{X}_{\mathrm{1}}\mathrm{\left(\mathit{\omega }\right)}\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{\omega }\right)}}$Frequency ... Read More

Signals and Systems – Partial Fraction Expansion Method for Inverse Z-Transform

Manish Kumar Saini
Updated on 11-Jan-2022 05:15:37

12K+ Views

Inverse Z-TransformThe inverse Z-transform is defined as the process of finding the time domain signal $\mathit{x}\mathrm{\left(\mathit{n}\right)}$ from its Z-transform $\mathit{X}\mathrm{\left(\mathit{z}\right)}$. The inverse Z-transform is denoted as −$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{Z}^{-\mathrm{1}}\mathrm{\left[\mathit{X}\mathrm{\left(\mathit{z}\right)}\right]}}$$Partial Fraction Expansion Method to Find Inverse Z-TransformIn order to determine the inverse Z-transform of $\mathit{X}\mathrm{\left(\mathit{z}\right)}$ using partial fraction expansion method, the denominator of $\mathit{X}\mathrm{\left(\mathit{z}\right)}$ must be in factored form. In this method, we obtained the partial fraction expansion of $\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}$ instead of $\mathit{X}\mathrm{\left(\mathit{z}\right)}$. This is because the Z-transform of time-domain sequences have Z in their numerators.The partial fraction expansion method is applied only if $\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}$ is a proper rational function, i.e., the order ... Read More

Signals and Systems – Parseval’s Power Theorem

Manish Kumar Saini
Updated on 07-Jan-2022 11:55:11

11K+ Views

Average PowerThe average power of a signal is defined as the mean power dissipated by the signal such as voltage or current in a unit resistance over a period. Mathematically, the average power is given by, $$\mathit{P}\:\mathrm{=}\:\lim_{T \rightarrow \infty}\frac{1}{\mathit{T}}\int_{\mathrm{-(\mathit{T}/\mathrm{2})}}^{\mathrm{(\mathit{T}/\mathrm{2})}}|\mathit{x}\mathrm{(\mathit{t})}|^\mathrm{2}\:\mathit{dt}$$Parseval's Power TheoremStatement − Parseval's power theorem states that the power of a signal is equal to the sum of square of the magnitudes of various harmonic components present in the discrete spectrum.Mathematically, the Parseval's power theorem is defined as −$$\mathit{P}\:\mathrm{=}\:\displaystyle\sum\limits_{n=-\infty}^\infty |\mathit{C}_\mathit{n}|^2$$ProofConsider a function $\mathit{x}\mathrm{(\mathit{t})}$. Then, the average power of the signal $\mathit{x}\mathrm{(\mathit{t})}$ over one complete cycle is given by, $$\mathit{P}\:\mathrm{=}\:\frac{1}{\mathit{T}}\int_{\mathrm{-(\mathit{T}/\mathrm{2})}}^{\mathrm{(\mathit{T}/\mathrm{2})}}|\mathit{x}\mathrm{(\mathit{t})}|^\mathrm{2}\:\mathit{dt}$$ $$\because|\mathit{x}\mathrm{(\mathit{t})}|^\mathrm{2}\:\mathrm{=}\: ... Read More

Signals and Systems – Long Division Method to Find Inverse Z-Transform

Manish Kumar Saini
Updated on 07-Jan-2022 11:45:18

6K+ Views

Inverse Z-TransformThe inverse Z-transform is defined as the process of finding the time domain signal $\mathit{x}\mathrm{(\mathit{n})}$ from its Z-transform $\mathit{X}\mathrm{(\mathit{z})}$. The inverse Z-transform is denoted as:$$\mathit{x}\mathrm{(\mathit{n})}\:\mathrm{=}\:\mathit{Z}^{\mathrm{-1}} [\mathit{X}\mathrm{(\mathit{z})}]$$Long Division Method to Calculate Inverse Z-TransformIf $\mathit{x}\mathrm{(\mathit{n})}$ is a two sided sequence, then its Z-transform is defined as, $$\mathit{X}\mathrm{(z)}\:\mathrm{=}\:\displaystyle\sum\limits_{n=-\infty}^\infty \mathit{x}\mathrm{(n)}\mathit{z}^{-\mathit{n}}$$Where, the Z-transform $\mathit{X}\mathrm{(\mathit{z})}$ has both positive powers of z as well as negative powers of z. Using the long division method, a two sided sequence cannot be obtained. Therefore, if the sequence $\mathit{x}\mathrm{(\mathit{n})}$ is a causal sequence, then$$\mathit{X}\mathrm{(z)}\:\mathrm{=}\:\displaystyle\sum\limits_{n=0}^\infty \mathit{x}\mathrm{(n)}\mathit{z}^{-\mathit{n}}\:\mathrm{=}\:\mathit{x}\mathrm{(0)}+\mathit{x}\mathrm{(1)}\mathit{z}^{\mathrm{-1}}+\mathit{x}\mathrm{(2)}\mathit{z}^{\mathrm{-2}}+\mathit{x}\mathrm{(3)}\mathit{z}^{\mathrm{-3}}+\dotso$$i.e., $\mathit{X}\mathrm{(\mathit{z})}$ has only negative powers of z and its ROC is $|\mathit{z}|>\:\mathit{a}$.And, if the ... Read More

Signals and Systems – Linearity Property of Laplace Transform

Manish Kumar Saini
Updated on 07-Jan-2022 11:41:39

4K+ Views

Laplace TransformThe Laplace transform is a mathematical tool which is used to convert the differential equation in time domain into the algebraic equations in the frequency domain or s-domain.Mathematically, if $\mathit{x}\mathrm{(\mathit{t})}$ is a time domain function, then its Laplace transform is defined as −$$\mathit{L}\mathrm{[\mathit{x}\mathrm{(\mathit{t})}]}\:\mathrm{=}\:\mathit{X}\mathrm{(\mathit{s})}\:\mathrm{=}\:\int_{-\infty}^{\infty}\mathit{x}\mathrm{(\mathit{t})\mathit{e^{-st}}}\mathit{dt}\:\:\:..(1)$$Equation (1) gives the bilateral Laplace transform of the function $\mathit{x}\mathrm{(\mathit{t})}$. But for the causal signals, the unilateral Laplace transform is applied, which is defined as −$$\mathit{L}\mathrm{[\mathit{x}\mathrm{(\mathit{t})}]}\:\mathrm{=}\:\mathit{X}\mathrm{(\mathit{s})}\:\mathrm{=}\:\int_{\mathrm{0}}^{\infty}\mathit{x}\mathrm{(\mathit{t})\mathit{e^{-st}}}\mathit{dt}\:\:\:..(2)$$Linearity Property of Laplace TransformStatement − The Linearity property of Laplace transform states that the Laplace transform of a weighted sum of two signals is equal to the weighted sum of ... Read More

Final Value Theorem of Laplace Transform

Manish Kumar Saini
Updated on 07-Jan-2022 11:39:59

35K+ Views

Laplace TransformThe Laplace transform is a mathematical tool which is used to convert the differential equation in time domain into the algebraic equations in the frequency domain or s-domain.Mathematically, if $\mathit{x}\mathrm{(\mathit{t})}$ is a time domain function, then its Laplace transform is defined as−$$\mathit{L}\mathrm{[\mathit{x}\mathrm{(\mathit{t})}]}\:\mathrm{=}\:\mathit{X}\mathrm{(\mathit{s})}\:\mathrm{=}\:\int_{-\infty}^{\infty}\mathit{x}\mathrm{(\mathit{t})\mathit{e^{-st}}}\mathit{dt}\:\:\:..(1)$$Equation (1) gives the bilateral Laplace transform of the function $\mathit{x}\mathrm{(\mathit{t})}$. But for the causal signals, the unilateral Laplace transform is applied, which is defined as −$$\mathit{L}\mathrm{[\mathit{x}\mathrm{(\mathit{t})}]}\:\mathrm{=}\:\mathit{X}\mathrm{(\mathit{s})}\:\mathrm{=}\:\int_{\mathrm{0}}^{\infty}\mathit{x}\mathrm{(\mathit{t})\mathit{e^{-st}}}\mathit{dt}\:\:\:..(2)$$Final Value TheoremThe final value theorem of Laplace transform enables us to find the final value of a function$\mathit{x}\mathrm{(\mathit{t})}$[i.e., $\mathit{x}\mathrm{(\infty)}$] directly from its Laplace transform X(s) without the need for finding the ... Read More

Initial Value Theorem of Laplace Transform

Manish Kumar Saini
Updated on 07-Jan-2022 11:29:36

36K+ Views

Laplace TransformThe Laplace transform is a mathematical tool which is used to convert the differential equation in time domain into the algebraic equations in the frequency domain or s-domain.Mathematically, if $\mathit{x}\mathrm{(\mathit{t})}$ is a time domain function, then its Laplace transform is defined as −$$\mathit{L}\mathrm{[\mathit{x}\mathrm{(\mathit{t})}]}\:\mathrm{=}\:\mathit{X}\mathrm{(\mathit{s})}\:\mathrm{=}\:\int_{-\infty}^{\infty}\mathit{x}\mathrm{(\mathit{t})\mathit{e^{-st}}}\mathit{dt} \:\:\:...(1)$$Equation (1) gives the bilateral Laplace transform of the function $\mathit{x}\mathrm{(\mathit{t})}$. But for the causal signals, the unilateral Laplace transform is applied, which is defined as −$$\mathit{L}\mathrm{[\mathit{x}\mathrm{(\mathit{t})}]}\:\mathrm{=}\:\mathit{X}\mathrm{(\mathit{s})}\:\mathrm{=}\:\int_{\mathrm{0}}^{\infty}\mathit{x}\mathrm{\mathrm{(\mathit{t})}\mathit{e^{-st}}}\mathit{dt} \:\:\:...(2)$$Initial Value TheoremThe initial value theorem of Laplace transform enables us to calculate the initial value of a function $\mathit{x}\mathrm{(\mathit{t})}$[i.e., $\:\:\mathit{x}\mathrm{(0)}$] directly from its Laplace transform X(s) without the ... Read More

Laplace Transform – Differentiation in s-domain

Manish Kumar Saini
Updated on 07-Jan-2022 11:28:34

6K+ Views

Laplace TransformThe Laplace transform is a mathematical tool which is used to convert the differential equation in time domain into the algebraic equations in the frequency domain or s-domain.Mathematically, if $\mathit{x}\mathrm{(\mathit{t})}$is a time-domain function, then its Laplace transform is defined as −$$\mathit{L}\mathrm{[\mathit{x}\mathrm{(\mathit{t})}]}\:\mathrm{=}\:\mathit{X}\mathrm{(\mathit{s})}\:\mathrm{=}\:\int_{-\infty}^{\infty}\mathit{x}\mathrm{(t)}\mathit{e^{-st}}\mathit{dt} \:\:...(1)$$Equation (1) gives the bilateral Laplace transform of the function $\mathit{x}\mathrm{(\mathit{t})}$. But for the causal signals, the unilateral Laplace transform is applied, which is defined as −$$\mathit{L}\mathrm{[\mathit{x}\mathrm{(\mathit{t})}]}\:\mathrm{=}\:\mathit{X}\mathrm{(\mathit{s})}\:\mathrm{=}\:\int_{\mathrm{0}}^{\infty}\mathit{x}\mathrm{(t)}\mathit{e^{-st}}\mathit{dt} \:\: ...(2)$$Frequency Derivative Property of Laplace TransformStatement − The differentiation in frequency domain or s-domain property of Laplace transform states that the multiplication of the function by $\mathit{'t'}$ in time domain ... Read More

Detection of Periodic Signals in the Presence of Noise (by Cross-Correlation)

Manish Kumar Saini
Updated on 07-Jan-2022 11:24:48

2K+ Views

Detection of Periodic Signals in the Presence of NoiseThe noise signal is an unwanted signal which has random amplitude variation. The noise signals are uncorrelated with any periodic signal.Detection of the periodic signals masked by noise signals is of great importance in signal processing. It is mainly used in the detection of radar and sonar signals, the detection of periodic components in brain signals, in the detection of periodic components in sea wave analysis and in many other areas of geophysics etc. The solution of these problems can be easily provided by thecorrelation techniques. The cross-correlation function, therefore can be ... Read More

Detection of Periodic Signals in the Presence of Noise (by Autocorrelation)

Manish Kumar Saini
Updated on 07-Jan-2022 11:22:26

2K+ Views

Detection of Periodic Signals in the Presence of NoiseThe noise signal is an unwanted signal which has random amplitude variation. The noise signals are uncorrelated with any periodic signal.Detection of the periodic signals masked by noise signals is of great importance in signal processing. It is mainly used in the detection of radar and sonar signals, the detection of periodic components in brain signals, in the detection of periodic components in sea wave analysis and in many other areas of geophysics etc. The solution of these problems can be easily provided by the correlation techniques. The autocorrelation function, therefore can ... Read More

Advertisements