
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Found 757 Articles for Digital Electronics

10K+ Views
Laplace TransformThe Laplace transform is a mathematical tool which is used to convert the differential equation in time domain into the algebraic equations in the frequency domain or s-domain.Mathematically, if $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ is a time domain function, then its Laplace transform is defined as −$$\mathrm{\mathit{L}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{t}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{s}\right)}\:\mathrm{=}\:\int_{-\infty }^{\infty }\mathit{x}\mathrm{\left(\mathit{t}\right)}\mathit{e^{-\mathit{st}}\:\mathit{dt}}\:\:\:\:\:\:...(1)}$$Equation (1) gives the bilateral Laplace transform of the function $\mathit{x}\mathrm{\left(\mathit{t}\right)}$. But for the causal signals, the unilateral Laplace transform is applied, which is defined as −$$\mathrm{\mathit{L}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{t}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{s}\right)}\:\mathrm{=}\:\int_{\mathrm{0}}^{\infty }\mathit{x}\mathrm{\left(\mathit{t}\right)}\mathit{e^{-\mathit{st}}\:\mathit{dt}}\:\:\:\:\:\:...(2)}$$Time Scaling Property of Laplace TransformStatement - The time scaling property of Laplace transform states that if, $$\mathrm{\mathit{x}\mathrm{\left(\mathit{t}\right)}\overset{\mathit{LT}}{\leftrightarrow}\mathit{X}\mathrm{\left(\mathit{s}\right)}}$$Then$$\mathrm{\mathit{x}\mathrm{\left(\mathit{at}\right)}\overset{\mathit{LT}}{\leftrightarrow}\frac{1}{\left|\mathit{a}\right|}\mathit{X}\mathrm{\left( \frac{\mathit{s}}{\mathit{a}}\right )}}$$ProofFrom the definition of Laplace transform, we have, $$\mathrm{\mathit{L}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{t}\right)}\right]}\:\mathrm{=}\:\int_{\mathrm{0}}^{\infty ... Read More

5K+ Views
Laplace TransformThe Laplace transform is a mathematical tool which is used to convert the differential equation in time domain into the algebraic equations in the frequency domain or s-domain.Mathematically, if $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ is a time domain function, then its Laplace transform is defined as −$$\mathrm{\mathit{L}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{t}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{s}\right)}\:\mathrm{=}\:\int_{-\infty }^{\infty }\mathit{x}\mathrm{\left(\mathit{t}\right)}\mathit{e^{-\mathit{st}}\:\mathit{dt}}\:\:\:\:\:\:...(1)}$$Integration in Time Domain Property of Laplace TransformStatement - The time integration property of Laplace transform states that if$$\mathrm{\mathit{x}\mathrm{\left(\mathit{t}\right)}\overset{\mathit{LT}}{\leftrightarrow}\mathit{X}\mathrm{\left(\mathit{s}\right)}}$$Then$$\mathrm{\int_{-\infty}^{\mathit{t}}\mathit{x}\mathrm{\left(\mathit{\tau }\right)}\mathit{d\tau}\overset{\mathit{LT}}{\leftrightarrow}\frac{\mathit{x}\mathrm{\left(\mathit{s}\right)}}{\mathit{s}}\:\mathrm{+}\:\int_{-\infty}^{\mathrm{0}}\frac{\mathit{x}\mathrm{\left(\mathit{\tau }\right)}}{\mathit{s}}\:\mathit{d\tau}}$$ProofConsider a function $\mathit{y}\mathrm{\left(\mathit{t}\right)}$ as, $$\mathrm{\mathit{y}\mathrm{\left(\mathit{t}\right)}\:\mathrm{=}\:\int_{-\infty }^{\mathit{t}}\mathit{x}\mathrm{\left(\mathit{\tau }\right)}\:\mathit{d\tau}}$$Taking differentiation on both sides with respect to time, we have, $$\mathrm{\frac{\mathit{d\mathit{y}\mathrm{\left(\mathit{t}\right)}}}{\mathit{dt}}\:\mathrm{=}\:\mathit{x}\mathrm{\left(\mathit{t}\right)}\:\:\:\:\:\:...(2)}$$Also, $$\mathrm{\mathit{y}\mathrm{\left(\mathrm{0}^{-}\right)}\:\mathrm{=}\:\int_{-\infty }^{\mathrm{0}}\mathit{x}\mathrm{\left(\mathit{\tau }\right)}\:\mathit{d\tau}\:\:\:\:\:\:...(3)}$$Taking the Laplace transform of equation (2), we get, $$\mathrm{\mathit{L}\mathrm{\left[ \frac{\mathit{d\mathit{y}\mathrm{\left(\mathit{t}\right)}}}{\mathit{dt}}\right ]}\:\mathrm{=}\:\mathit{L}\mathrm{\left [ \mathit{x}\mathrm{\left(\mathit{t}\right)} ... Read More

8K+ Views
Z-TransformZ-transform is a mathematical tool which is used to convert the difference equations in time domain into the algebraic equations in the frequency domain.Mathematically, if $\mathrm{\mathit{x\left ( n \right )}}$ is a discrete-time sequence, then its Z-transform is defined as −$$\mathrm{\mathit{X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )z^{-n}\; \; \; \cdot \cdot \cdot \left ( \mathrm{1} \right )}}$$Where, z is a complex variable. The z-transform defined in eq. (1) is called bilateral or two-sided z-transform.The unilateral or one-sided z-transform is defined as −$$\mathrm{\mathit{X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }\mathrm{0}}^{\infty }x\left ( ... Read More

15K+ Views
Laplace TransformThe Laplace transform is a mathematical tool which is used to convert the differential equation in time domain into the algebraic equations in the frequency domain or s-domain.Mathematically, if $\mathrm{\mathit{x\left ( t \right )}}$ is a time domain function, then its Laplace transform is defined as, $$\mathrm{\mathit{L\left [ x\left ( t \right ) \right ]\mathrm{\, =\, }X\left ( s \right )\mathrm{\, =\, }\int_{-\infty }^{\infty }x\left ( t \right )e^{-st}\:dt \; \; \cdot \cdot \cdot \left ( \mathrm{1} \right )}}$$Equation (1) gives the bilateral Laplace transform of the function $\mathrm{\mathit{x\left ( t \right )}}$. But for the causal signals, the ... Read More

4K+ Views
Laplace TransformThe Laplace transform is a mathematical tool which is used to convert the differential equation in time domain into the algebraic equations in the frequency domain or s-domain.Mathematically, if $\mathrm{\mathit{x\left ( t \right )}}$ is a time domain function, then its Laplace transform is defined as −$$\mathrm{\mathit{L\left [ x\left ( t \right ) \right ]\mathrm{\, =\, }X\left ( s \right )\mathrm{\, =\, }\int_{-\infty }^{\infty }x\left ( t \right )e^{-st}\:dt }}$$Time Reversal Property of Laplace TransformStatement – The time reversal property of Laplace transform states that if a signal is reversed about the vertical axis at origin in the time ... Read More

8K+ Views
Laplace TransformThe Laplace transform is a mathematical tool which is used to convert the differential equation in time domain into the algebraic equations in the frequency domain or s-domain.Mathematically, if $\mathrm{\mathit{x\left ( t \right )}}$ is a time domain function, then its Laplace transform is defined as −$$\mathrm{\mathit{L\left [ x\left ( t \right ) \right ]\mathrm{\, =\, }X\left ( s \right )\mathrm{\, =\, }\int_{-\infty }^{\infty }x\left ( t \right )e^{-st}\:dt\; \; \cdot \cdot \cdot\left ( \mathrm{1} \right ) }}$$Equation (1) gives the bilateral Laplace transform of the function $\mathrm{\mathit{x\left ( t \right )}}$. But for the causal signals, the unilateral ... Read More

26K+ Views
The Inverse Z-TransformThe inverse Z-transform is defined as the process of finding the time domain signal $\mathrm{\mathit{x\left ( n \right )}}$ from its Z-transform $\mathrm{\mathit{X\left ( z \right )}}$. The inverse Z-transform is denoted as −$$\mathrm{\mathit{x\left ( n \right )\mathrm{\, =\, }Z^{-\mathrm{1}}\left [ X\left ( z \right ) \right ]}}$$Since the Z-transform is defined as, $$\mathrm{\mathit{X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )z^{-n}\; \; \; \cdot \cdot \cdot \left ( \mathrm{1} \right )}}$$Where, z is a complex variable and is given by, $$\mathrm{\mathit{z\mathrm{\, =\, }r\, e^{j\, \omega }}}$$Where, r is the radius of ... Read More

2K+ Views
Laplace TransformThe Laplace transform is a mathematical tool which is used to convert the differential equation in time domain into the algebraic equations in the frequency domain or sdomain.Mathematically, if $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ is a time domain function, then its Laplace transform is defined as −$$\mathrm{\mathit{L}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{t}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{s}\right)}\:\mathrm{=}\:\int_{-\infty }^{\infty }\mathit{x}\mathrm{\left(\mathit{t}\right)}\mathit{e^{-\mathit{st}}\:\mathit{dt}}}$$Solution of Differential Equations Using Laplace TransformA linear time invariant (LTI) system is described by constant coefficient differential equations which are relating the input and output of the system. The response of the LTI system is obtained by solving these differential equations.The Laplace transformation technique can be used for solving the differential equation describing the ... Read More

4K+ Views
Z-TransformThe Z-Transform is a mathematical tool which is used to convert the difference equations in time domain into the algebraic equations in the z-domain. Mathematically, the Z-transform of a discrete-time signal or a sequence $\mathit{x}\mathrm{\left(\mathit{n}\right)}$ is defined as −$$\mathrm{\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty }}^{\infty }\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z}^{-\mathit{n}}}$$Properties of Z-TransformThe following table highlights some of the important properties of Z-Transform −PropertyTime-Domainz-DomainRegion of Convergence (ROC)Notation$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}}$$\mathrm{\mathit{X}\mathrm{\left(\mathit{z}\right)}}$$\mathrm{\mathit{R}}$$\mathrm{\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{n}\right)}}$$\mathrm{\mathit{X}_{\mathrm{1}}\mathrm{\left(\mathit{z}\right)}}$$\mathrm{\mathit{R}_{\mathrm{1}}}$$\mathrm{\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{n}\right)}}$$\mathrm{\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{z}\right)}}$$\mathrm{\mathit{R}_{\mathrm{2}}}$Linearity and Superposition$\mathrm{\mathit{a}\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{n} \right)}\:\mathrm{+}\:\mathit{b}\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{n} \right)}}$$\mathrm{\mathit{a}\mathit{X}_{\mathrm{1}}\mathrm{\left(\mathit{z} \right)}\:\mathrm{+}\:\mathit{b}\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{z}\right)}}$$\mathrm{\mathit{R}_{\mathrm{1}}\:\cap \mathit{R}_{\mathrm{2}}}$Time-Shifting$\mathrm{\mathit{x}\mathrm{\left(\mathit{n-k}\right)}}$$\mathrm{\mathit{z}^{-\mathit{k}}\mathit{X}\mathrm{\left(\mathit{z}\right)}}$$\mathrm{\mathrm{same\:as\:}\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{except}\:\mathit{z}\:\mathrm{=}\:\mathrm{0}}$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n\mathrm{+}\mathit{k}}\right)}}$$\mathrm{\mathit{z}^{\mathit{k}}\mathit{X}\mathrm{\left(\mathit{z}\right)}}$$\mathrm{\mathrm{same\:as\:}\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{except}\:\mathit{z}\:\mathrm{=}\:\mathrm{\infty}}$Scaling in zdomain$\mathrm{\mathit{a}^{\mathit{n}}\mathit{x}\mathrm{\left(\mathit{n}\right)}}$$\mathrm{\mathit{X}\mathrm{\left( \frac{\mathit{z}}{\mathit{a}}\right )}}$$\mathrm{\left|\mathit{a}\right|\mathit{R}_{\mathrm{1}}Read More

7K+ Views
Laplace TransformThe Laplace transform is a mathematical tool which is used to convert the differential equations in time domain into the algebraic equations in the frequency domain or s-domain.Mathematically, the Laplace transform of a time-domain function $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ is defined as −$$\mathrm{\mathit{L}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{t}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{s}\right)}\:\mathrm{=}\:\int_{\mathrm{0} }^{\mathrm{\infty} }\mathit{x}\mathrm{\left(\mathit{t}\right)}\mathit{e^{-\mathit{st}}\:\mathit{dt}}}$$Where, s is a complex variable and it is given by, $$\mathrm{\mathit{s}\:\mathrm{=}\:\sigma \:\mathrm{+}\:\mathit{j\omega}}$$And the operator L is called the Laplace transform operator which transforms the domain function $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ into the frequency domain function X(s).Properties of Laplace TransformThe following table highlights some of the important properties of Laplace transform −PropertyFunction $\mathit{x}\mathrm{\left(\mathit{t}\right)}$Laplace Transform $\mathit{X}\mathrm{\left(\mathit{s}\right)}$Notation$\mathrm{\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{t}\right)}}$$\mathrm{\mathit{X}_{\mathrm{1}}\mathrm{\left(\mathit{s}\right)}}$$\mathrm{\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{t}\right)}}$$\mathrm{\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{s}\right)}}$Scalar Multiplication$\mathrm{\mathit{k}\mathit{x}\mathrm{\left(\mathit{t}\right)}}$$\mathrm{\mathit{k}\mathit{X}\mathrm{\left(\mathit{s}\right)}}$Linearity$\mathrm{\mathit{a}\mathit{x}_{\mathrm{1}}\mathrm{\left( \mathit{t}\right)}\:\mathrm{+}\:\mathit{b}\mathit{x}_{\mathrm{2}}\mathrm{\left( \mathit{t}\right)}}$$\mathrm{\mathit{a}\mathit{X}_{\mathrm{1}}\mathrm{\left( \mathit{s }\right)}\:\mathrm{+}\:\mathit{b}\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{s}\right)}}$Time Shifting$\mathrm{\mathit{x}\mathrm{\left(\mathit{t-t_{\mathrm{0}}}\right)}}$$\mathrm{\mathit{e}^{- ... Read More