
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Found 757 Articles for Digital Electronics

7K+ Views
Realization of Continuous-Time SystemRealisation of a continuous-time LTI system means obtaining a network corresponding to the differential equation or transfer function of the system.The transfer function of the system can be realised either by using integrators or differentiators. Due to certain drawbacks, the differentiators are not used to realise the practical systems. Therefore, only integrators are used for the realization of continuous-time systems. The adder and multipliers are other two elements which are used realise the continuous-time systems.Cascade Form Realisation of CT SystemsIn the cascade form realisation of continuous-time systems, the transfer function of the system is expressed as the ... Read More

7K+ Views
Stability and CausalityThe necessary and sufficient condition for a causal linear time invariant (LTI) discrete-time system to be BIBO stable is given by, $$\mathrm{\mathit{\sum_{n=\mathrm{0}}^{\infty }\left|h\left ( n \right ) \right|< \infty }}$$Therefore, if the impulse response of an LTI discrete-time system is absolutely summable, then the system is BIBO stable.Also, for the system to be causal, the impulse response of the system must be equal to zero for π < 0, i.e., $$\mathrm{\mathit{h\left ( n \right )=\mathrm{0};\; \; \mathrm{for}\: n< \mathrm{0}}}$$In other words, if the given LTI discrete-time system is causal, then the region of convergence (ROC) for H(z) will ... Read More

28K+ Views
Z-TransformThe Z-transform (ZT) is a mathematical tool which is used to convert the difference equations in time domain into the algebraic equations in z-domain.Mathematically, if $\mathrm{\mathit{x\left ( n \right )}}$ is a discrete-time signal or sequence, then its bilateral or two-sided Z-transform is defined as β$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )z^{-n}}}$$Where, z is a complex variable.Also, the unilateral or one-sided z-transform is defined as β$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, ... Read More

6K+ Views
The Z-transform (ZT) is a mathematical tool which is used to convert the difference equations in time domain into the algebraic equations in z-domain.Mathematically, if $\mathrm{\mathit{x\left ( n \right )}}$ is a discrete-time signal or sequence, then its bilateral or two-sided Z-transform is defined as β$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )z^{-n}}}$$Where, z is a complex variable.Also, the unilateral or one-sided z-transform is defined as β$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, ... Read More

25K+ Views
Z-TransformThe Z-transform (ZT) is a mathematical tool which is used to convert the difference equations in time domain into the algebraic equations in z-domain.Mathematically, if $\mathrm{\mathit{x\left ( n \right )}}$ is a discrete-time signal or sequence, then its bilateral or two-sided Z-transform is defined as β$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )z^{-n}}}$$Where, z is a complex variable.Also, the unilateral or one-sided z-transform is defined as β$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, ... Read More

47K+ Views
What is Z-Transform?The Z-transform (ZT) is a mathematical tool which is used to convert the difference equations in time domain into the algebraic equations in z-domain.The Z-transform is a very useful tool in the analysis of a linear shift invariant (LSI) system. An LSI discrete time system is represented by difference equations. To solve these difference equations which are in time domain, they are converted first into algebraic equations in z-domain using the Z-transform, then the algebraic equations are manipulated in z-domain and the result obtained is converted back into time domain using the inverse Z-transform.The Z-transform may be of ... Read More

4K+ Views
The sequences having a finite number of samples are called the finite duration sequences. The finite duration sequences may be of following three types viz. βRight-Hand SequencesLeft-Hand SequencesTwo-Sided SequencesRight-Hand SequenceA sequence for which $\mathrm{\mathit{x\left ( n \right )}}$ = 0 for $\mathit{n}$ < $\mathit{n_{\mathrm{0}}}$ where $\mathit{n_{\mathrm{0}}}$ may be positive or negative but finite, is called the right hand sequence. If $\mathit{n_{\mathrm{0}}}$ β₯ 0, the resulting sequence is a causal sequence. The ROC of a causal sequence is the entire z-plane except at π§ = 0.Numerical Example (1)Find the ROC and Z-Transform of the causal sequence.$$\mathrm{\mathit{x\left ( n \right )}\mathrm{\, =\, ... Read More

21K+ Views
Fourier TransformThe Fourier transform is a transformation technique which is used to transform the signals from continuous-time domain to the corresponding frequency domain.Mathematically, if $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ is a continuous-time domain function, then its Fourier transform is given by, $$\mathrm{\mathit{F}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{t}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{\omega }\right)}\:\mathrm{=}\:\int_{-\infty }^{\infty }\mathit{x}\mathrm{\left(\mathit{t}\right)}\mathit{e^{-\mathit{j\omega t}}\:\mathit{dt}} \:\:\:\:\:\:...(1)}$$Laplace TransformThe Laplace transform is a mathematical tool which is used to convert the differential equation in time domain into the algebraic equations in the frequency domain or s-domain.Mathematically, if $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ is a time domain function, then its Laplace transform is defined as β$$\mathrm{\mathit{L}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{t}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{s}\right)}\:\mathrm{=}\:\int_{-\infty }^{\infty }\mathit{x}\mathrm{\left(\mathit{t}\right)}\mathit{e^{-\mathit{st}}\:\mathit{dt}}\:\:\:\:\:\:...(2)}$$Where, s is a complex variable and it is given by, $$\mathrm{\mathit{s}\:\mathrm{=}\:\sigma \:\mathrm{+}\:\mathit{j\omega}}$$Relation ... Read More

15K+ Views
Z-TransformThe Z-transform (ZT) is a mathematical tool which is used to convert the difference equations in time domain into the algebraic equations in z-domain.Mathematically, if $\mathit{x}\mathrm{\left(\mathit{n}\right)}$ is a discrete-time signal or sequence, then its bilateral or two-sided Z-transform is defined as β$$\mathrm{\mathit{Z}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\sum_{\mathit{n=-\infty }}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z^{-\mathit{n}}}\:\:\:\:\:\:...(1)}$$Where, z is a complex variable.Also, the unilateral or one-sided z-transform is defined as β$$\mathrm{\mathit{Z}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\sum_{\mathit{n=\mathrm{0} }}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z^{-\mathit{n}}}\:\:\:\:\:\:...(2)}$$Laplace TransformThe Laplace transform is a mathematical tool which is used to convert the differential equation in time domain into the algebraic equations in the frequency domain or s-domain.Mathematically, if $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ is a time domain function, then its Laplace transform is defined as ... Read More

19K+ Views
Laplace TransformThe Laplace transform is a mathematical tool which is used to convert the differential equation in time domain into the algebraic equations in the frequency domain or s-domain.Mathematically, if $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ is a time domain function, then its Laplace transform is defined as β$$\mathrm{\mathit{L}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{t}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{s}\right)}\:\mathrm{=}\:\int_{-\infty }^{\infty }\mathit{x}\mathrm{\left(\mathit{t}\right)}\mathit{e^{-\mathit{st}}\:\mathit{dt}}\:\:\:\:\:\:...(1)}$$Equation (1) gives the bilateral Laplace transform of the function $\mathit{x}\mathrm{\left(\mathit{t}\right)}$. But for the causal signals, the unilateral Laplace transform is applied, which is defined as, $$\mathrm{\mathit{L}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{t}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{s}\right)}\:\mathrm{=}\:\int_{\mathrm{0}}^{\infty }\mathit{x}\mathrm{\left(\mathit{t}\right)}\mathit{e^{-\mathit{st}}\:\mathit{dt}}\:\:\:\:\:\:...(2)}$$Time Shifting Property of Laplace TransformStatement - The time shifting property of Laplace transform states that a shift of t0 in time domain corresponds to the multiplication by ... Read More