Found 757 Articles for Digital Electronics

Cascade Form Realization of Continuous-Time Systems

Manish Kumar Saini
Updated on 21-Jan-2022 06:29:44

7K+ Views

Realization of Continuous-Time SystemRealisation of a continuous-time LTI system means obtaining a network corresponding to the differential equation or transfer function of the system.The transfer function of the system can be realised either by using integrators or differentiators. Due to certain drawbacks, the differentiators are not used to realise the practical systems. Therefore, only integrators are used for the realization of continuous-time systems. The adder and multipliers are other two elements which are used realise the continuous-time systems.Cascade Form Realisation of CT SystemsIn the cascade form realisation of continuous-time systems, the transfer function of the system is expressed as the ... Read More

BIBO Stability of Discrete-Time Systems

Manish Kumar Saini
Updated on 21-Jan-2022 06:00:36

7K+ Views

Stability and CausalityThe necessary and sufficient condition for a causal linear time invariant (LTI) discrete-time system to be BIBO stable is given by, $$\mathrm{\mathit{\sum_{n=\mathrm{0}}^{\infty }\left|h\left ( n \right ) \right|< \infty }}$$Therefore, if the impulse response of an LTI discrete-time system is absolutely summable, then the system is BIBO stable.Also, for the system to be causal, the impulse response of the system must be equal to zero for 𝑛 < 0, i.e., $$\mathrm{\mathit{h\left ( n \right )=\mathrm{0};\; \; \mathrm{for}\: n< \mathrm{0}}}$$In other words, if the given LTI discrete-time system is causal, then the region of convergence (ROC) for H(z) will ... Read More

Z-Transform of Unit Impulse, Unit Step, and Unit Ramp Functions

Manish Kumar Saini
Updated on 19-Jan-2022 07:27:15

28K+ Views

Z-TransformThe Z-transform (ZT) is a mathematical tool which is used to convert the difference equations in time domain into the algebraic equations in z-domain.Mathematically, if $\mathrm{\mathit{x\left ( n \right )}}$ is a discrete-time signal or sequence, then its bilateral or two-sided Z-transform is defined as βˆ’$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )z^{-n}}}$$Where, z is a complex variable.Also, the unilateral or one-sided z-transform is defined as βˆ’$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, ... Read More

Z-Transform of Exponential Functions

Manish Kumar Saini
Updated on 19-Jan-2022 07:22:08

6K+ Views

The Z-transform (ZT) is a mathematical tool which is used to convert the difference equations in time domain into the algebraic equations in z-domain.Mathematically, if $\mathrm{\mathit{x\left ( n \right )}}$ is a discrete-time signal or sequence, then its bilateral or two-sided Z-transform is defined as βˆ’$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )z^{-n}}}$$Where, z is a complex variable.Also, the unilateral or one-sided z-transform is defined as βˆ’$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, ... Read More

Signals and Systems – Z-Transform of Sine and Cosine Signals

Manish Kumar Saini
Updated on 19-Jan-2022 07:13:29

25K+ Views

Z-TransformThe Z-transform (ZT) is a mathematical tool which is used to convert the difference equations in time domain into the algebraic equations in z-domain.Mathematically, if $\mathrm{\mathit{x\left ( n \right )}}$ is a discrete-time signal or sequence, then its bilateral or two-sided Z-transform is defined as βˆ’$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )z^{-n}}}$$Where, z is a complex variable.Also, the unilateral or one-sided z-transform is defined as βˆ’$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, ... Read More

What is Z-Transform?

Manish Kumar Saini
Updated on 14-Sep-2023 13:10:13

47K+ Views

What is Z-Transform?The Z-transform (ZT) is a mathematical tool which is used to convert the difference equations in time domain into the algebraic equations in z-domain.The Z-transform is a very useful tool in the analysis of a linear shift invariant (LSI) system. An LSI discrete time system is represented by difference equations. To solve these difference equations which are in time domain, they are converted first into algebraic equations in z-domain using the Z-transform, then the algebraic equations are manipulated in z-domain and the result obtained is converted back into time domain using the inverse Z-transform.The Z-transform may be of ... Read More

Z-Transform and ROC of Finite Duration Sequences

Manish Kumar Saini
Updated on 19-Jan-2022 07:00:49

4K+ Views

The sequences having a finite number of samples are called the finite duration sequences. The finite duration sequences may be of following three types viz. βˆ’Right-Hand SequencesLeft-Hand SequencesTwo-Sided SequencesRight-Hand SequenceA sequence for which $\mathrm{\mathit{x\left ( n \right )}}$ = 0 for $\mathit{n}$ < $\mathit{n_{\mathrm{0}}}$ where $\mathit{n_{\mathrm{0}}}$ may be positive or negative but finite, is called the right hand sequence. If $\mathit{n_{\mathrm{0}}}$ β‰₯ 0, the resulting sequence is a causal sequence. The ROC of a causal sequence is the entire z-plane except at 𝑧 = 0.Numerical Example (1)Find the ROC and Z-Transform of the causal sequence.$$\mathrm{\mathit{x\left ( n \right )}\mathrm{\, =\, ... Read More

Relation between Laplace Transform and Fourier Transform

Manish Kumar Saini
Updated on 19-Jan-2022 06:47:56

21K+ Views

Fourier TransformThe Fourier transform is a transformation technique which is used to transform the signals from continuous-time domain to the corresponding frequency domain.Mathematically, if $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ is a continuous-time domain function, then its Fourier transform is given by, $$\mathrm{\mathit{F}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{t}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{\omega }\right)}\:\mathrm{=}\:\int_{-\infty }^{\infty }\mathit{x}\mathrm{\left(\mathit{t}\right)}\mathit{e^{-\mathit{j\omega t}}\:\mathit{dt}} \:\:\:\:\:\:...(1)}$$Laplace TransformThe Laplace transform is a mathematical tool which is used to convert the differential equation in time domain into the algebraic equations in the frequency domain or s-domain.Mathematically, if $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ is a time domain function, then its Laplace transform is defined as βˆ’$$\mathrm{\mathit{L}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{t}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{s}\right)}\:\mathrm{=}\:\int_{-\infty }^{\infty }\mathit{x}\mathrm{\left(\mathit{t}\right)}\mathit{e^{-\mathit{st}}\:\mathit{dt}}\:\:\:\:\:\:...(2)}$$Where, s is a complex variable and it is given by, $$\mathrm{\mathit{s}\:\mathrm{=}\:\sigma \:\mathrm{+}\:\mathit{j\omega}}$$Relation ... Read More

Difference between Z-Transform and Laplace Transform

Manish Kumar Saini
Updated on 19-Jan-2022 06:44:26

15K+ Views

Z-TransformThe Z-transform (ZT) is a mathematical tool which is used to convert the difference equations in time domain into the algebraic equations in z-domain.Mathematically, if $\mathit{x}\mathrm{\left(\mathit{n}\right)}$ is a discrete-time signal or sequence, then its bilateral or two-sided Z-transform is defined as βˆ’$$\mathrm{\mathit{Z}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\sum_{\mathit{n=-\infty }}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z^{-\mathit{n}}}\:\:\:\:\:\:...(1)}$$Where, z is a complex variable.Also, the unilateral or one-sided z-transform is defined as βˆ’$$\mathrm{\mathit{Z}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\sum_{\mathit{n=\mathrm{0} }}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z^{-\mathit{n}}}\:\:\:\:\:\:...(2)}$$Laplace TransformThe Laplace transform is a mathematical tool which is used to convert the differential equation in time domain into the algebraic equations in the frequency domain or s-domain.Mathematically, if $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ is a time domain function, then its Laplace transform is defined as ... Read More

Time Shifting Property of Laplace Transform

Manish Kumar Saini
Updated on 19-Jan-2022 06:39:18

19K+ Views

Laplace TransformThe Laplace transform is a mathematical tool which is used to convert the differential equation in time domain into the algebraic equations in the frequency domain or s-domain.Mathematically, if $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ is a time domain function, then its Laplace transform is defined as βˆ’$$\mathrm{\mathit{L}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{t}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{s}\right)}\:\mathrm{=}\:\int_{-\infty }^{\infty }\mathit{x}\mathrm{\left(\mathit{t}\right)}\mathit{e^{-\mathit{st}}\:\mathit{dt}}\:\:\:\:\:\:...(1)}$$Equation (1) gives the bilateral Laplace transform of the function $\mathit{x}\mathrm{\left(\mathit{t}\right)}$. But for the causal signals, the unilateral Laplace transform is applied, which is defined as, $$\mathrm{\mathit{L}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{t}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{s}\right)}\:\mathrm{=}\:\int_{\mathrm{0}}^{\infty }\mathit{x}\mathrm{\left(\mathit{t}\right)}\mathit{e^{-\mathit{st}}\:\mathit{dt}}\:\:\:\:\:\:...(2)}$$Time Shifting Property of Laplace TransformStatement - The time shifting property of Laplace transform states that a shift of t0 in time domain corresponds to the multiplication by ... Read More

Advertisements