- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
The perimeter of a rectangle is numerically equal to its area. If the width of a rectangle is $\frac{7}{2}\ cm$ then its length is
Given:
The perimeter of a rectangle is numerically equal to its area.
The width of the rectangle is $\frac{7}{2}\ cm$.
To do:
We have to find its length.
Solution:
Let the length of the rectangle be $x$.
This implies,
Perimeter of the rectangle $=2(x+\frac{7}{2})$
Area of the rectangle $=x \times \frac{7}{2}$
According to the question,
$2(x+\frac{7}{2})=x \times \frac{7}{2}$
$2x+7=\frac{7x}{2}$
$2x-\frac{7x}{2}=-7$
$\frac{4x-7x}{2}=-7$
$\frac{-3x}{2}=-7$
$-3x=2(-7)$
$x=\frac{14}{3}$
The length of the rectangle is $\frac{14}{3}\ cm$.
Advertisements