- Design and Analysis of Algorithms
- Home

- Basics of Algorithms
- DAA - Introduction
- DAA - Analysis of Algorithms
- DAA - Methodology of Analysis
- Asymptotic Notations & Apriori Analysis
- DAA - Space Complexities

- Design Strategies
- DAA - Divide & Conquer
- DAA - Max-Min Problem
- DAA - Merge Sort
- DAA - Binary Search
- Strassen’s Matrix Multiplication
- DAA - Greedy Method
- DAA - Fractional Knapsack
- DAA - Job Sequencing with Deadline
- DAA - Optimal Merge Pattern
- DAA - Dynamic Programming
- DAA - 0-1 Knapsack
- Longest Common Subsequence

- Graph Theory
- DAA - Spanning Tree
- DAA - Shortest Paths
- DAA - Multistage Graph
- Travelling Salesman Problem
- Optimal Cost Binary Search Trees

- Heap Algorithms
- DAA - Binary Heap
- DAA - Insert Method
- DAA - Heapify Method
- DAA - Extract Method

- Sorting Methods
- DAA - Bubble Sort
- DAA - Insertion Sort
- DAA - Selection Sort
- DAA - Quick Sort
- DAA - Radix Sort

- Complexity Theory
- Deterministic vs. Nondeterministic Computations
- DAA - Max Cliques
- DAA - Vertex Cover
- DAA - P and NP Class
- DAA - Cook’s Theorem
- NP Hard & NP-Complete Classes
- DAA - Hill Climbing Algorithm

- DAA Useful Resources
- DAA - Quick Guide
- DAA - Useful Resources
- DAA - Discussion

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

In an undirected graph, a **clique** is a complete sub-graph of the given graph. Complete sub-graph means, all the vertices of this sub-graph is connected to all other vertices of this sub-graph.

The Max-Clique problem is the computational problem of finding maximum clique of the graph. Max clique is used in many real-world problems.

Let us consider a social networking application, where vertices represent people’s profile and the edges represent mutual acquaintance in a graph. In this graph, a clique represents a subset of people who all know each other.

To find a maximum clique, one can systematically inspect all subsets, but this sort of brute-force search is too time-consuming for networks comprising more than a few dozen vertices.

Algorithm: Max-Clique (G, n, k)S := Φ for i = 1 to k do t := choice (1…n) if t Є S then return failure S := S ∪ t for all pairs (i, j) such that i Є S and j Є S and i ≠ j do if (i, j) is not a edge of the graph then return failure return success

Max-Clique problem is a non-deterministic algorithm. In this algorithm, first we try to determine a set of **k** distinct vertices and then we try to test whether these vertices form a complete graph.

There is no polynomial time deterministic algorithm to solve this problem. This problem is NP-Complete.

Take a look at the following graph. Here, the sub-graph containing vertices 2, 3, 4 and 6 forms a complete graph. Hence, this sub-graph is a **clique**. As this is the maximum complete sub-graph of the provided graph, it’s a **4-Clique**.

Advertisements