- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ x^{2}+\frac{1}{x^{2}}=62, $ find the value of
- $ x+\frac{1}{x} $
- $ x-\frac{1}{x} $
Given:
\( x^{2}+\frac{1}{x^{2}}=62 \)
To do:
We have to find the value of
(a) \( x+\frac{1}{x} \)
(b) \( x-\frac{1}{x} \)
Solution:
(a) $x^{2}+\frac{1}{x^{2}}=62$
Adding 2 on both sides, we get,
$x^{2}+\frac{1}{x^{2}}+2=62+2$
$x^{2}+\frac{1}{x^{2}}+2\times x \times \frac{1}{x}=64$
$(x+\frac{1}{x})^2=(8)^2$
This implies,
$x+\frac{1}{x}=8$.
(b) $x^{2}+\frac{1}{x^{2}}=62$
Subtracting 2 on both sides, we get,
$x^{2}+\frac{1}{x^{2}}-2=62-2$
$x^{2}+\frac{1}{x^{2}}-2\times x \times \frac{1}{x}=60$
$(x-\frac{1}{x})^2=(\sqrt{15\times4})^2$
$(x-\frac{1}{x})^2=(2\sqrt{15})^2$
This implies,
$x-\frac{1}{x}=2\sqrt{15}$.
Advertisements