- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ x^{2}+\frac{1}{x^{2}}=66 $, find the value of $ x-\frac{1}{x} $.
Given:
\( x^{2}+\frac{1}{x^{2}}=66 \)
To do:
We have to find the value of \( x-\frac{1}{x} \).
Solution:
We know that,
$(a+b)^2=a^2+b^2+2ab$
$(a-b)^2=a^2+b^2-2ab$
$(a+b)(a-b)=a^2-b^2$
Therefore,
$(x-\frac{1}{x})^{2}=x^{2}+\frac{1}{x^{2}}-2\times x \times \frac{1}{x}$
$\Rightarrow (x-\frac{1}{x})^{2}=66-2$
$\Rightarrow (x-\frac{1}{x})^{2}=64$
$\Rightarrow x-\frac{1}{x}=\sqrt{64}$
$\Rightarrow x-\frac{1}{x}=\pm 8$
Hence, $x-\frac{1}{x}=\pm 8$.
Advertisements