- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ x^{2}+\frac{1}{x^{2}}=98 $, find the value of $ x^{3}+\frac{1}{x^{3}} $.
Given:
\( x^{2}+\frac{1}{x^{2}}=98 \)
To do:
We have to find the value of \( x^{3}+\frac{1}{x^{3}} \).
Solution:
We know that,
$(a+b)^3=a^3 + b^3 + 3ab(a+b)$
Therefore,
$(x+\frac{1}{x})^{2}=x^{2}+\frac{1}{x^{2}}+2 \times x \times \frac{1}{x}$
$=x^{2}+\frac{1}{x^{2}}+2$
$=98+2$
$=100$
$=(10)^{2}$
$\Rightarrow x+\frac{1}{x}=10$
Cubing both sides, we get,
$(x+\frac{1}{x})^{3}=(10)^{3}$
$\Rightarrow x^{3}+\frac{1}{x^{3}}+3 \times x \times \frac{1}{x}(x+\frac{1}{x})=1000$
$\Rightarrow x^{3}+\frac{1}{x^{3}}+3 \times 10=1000$
$\Rightarrow x^{3}+\frac{1}{x^{3}}+30=1000$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=1000-30$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=970$
The value of \( x^{3}+\frac{1}{x^{3}} \) is $970$.
Advertisements