- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ x^{4}+\frac{1}{x^{4}}=194 $, find $ x^{3}+\frac{1}{x^{3}}, x^{2}+\frac{1}{x^{2}} $ and $ x+\frac{1}{x} $
Given:
\( x^{4}+\frac{1}{x^{4}}=194 \)
To do:
We have to find \( x^{3}+\frac{1}{x^{3}}, x^{2}+\frac{1}{x^{2}} \) and \( x+\frac{1}{x} \).
Solution:
$x^{4}+\frac{1}{x^{4}}=194$
Adding 2 to both sides, we get,
$x^{4}+\frac{1}{x^{4}}+2=194+2$
$x^{4}+\frac{1}{x^{4}}+2=196$
$(x^{2})^{2}+\frac{1}{(x^{2})^{2}}+2\times x^2 \times \frac{1}{x^2}=(14)^{2}$
$(x^{2}+\frac{1}{x^{2}})^{2}=(14)^{2}$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=14$
Similarly,
$x^{2}+\frac{1}{x^{2}}=14$
Adding 2 to both sides, we get,
$x^{2}+\frac{1}{x^{2}}+2=14+2$
$x^{2}+\frac{1}{x^{2}}+2\times x \times \frac{1}{x}=16$
$x^{2}+\frac{1}{x^{2}}+2\times x \times \frac{1}{x}=(4)^{2}$
$(x+\frac{1}{x})^{2}=(4)^{2}$
$\Rightarrow x+\frac{1}{x}=4$
Similarly,
$x+\frac{1}{x}=4$
Cubing both sides, we get,
$(x+\frac{1}{x})^{3}=x^{3}+\frac{1}{x^{3}}+3 \times x \times \frac{1}{x}(x+\frac{1}{x})$
$(4)^{3}=x^{3}+\frac{1}{x^{3}}+3 \times 4$
$64=x^{3}+\frac{1}{x^{3}}+12$
$x^{3}+\frac{1}{x^{3}}=64-12$
$x^{3}+\frac{1}{x^{3}}=52$
Hence, \( x^{3}+\frac{1}{x^{3}}=52, x^{2}+\frac{1}{x^{2}}=14 \) and \( x+\frac{1}{x}=4 \).