- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $x - \frac{1}{x} = \sqrt{5}$, find the value of $x^2 + \frac{1}{x^2}$
Given :
The given term is $x - \frac{1}{x} = \sqrt{5}$
To find:
We have to find the value of $x^2 + \frac{1}{x^2}$.
Solution:
$x - \frac{1}{x} = \sqrt{5}$.
Squaring on both sides, we get
$(x - \frac{1}{x})^2 = (\sqrt{5})^2$
$x^2 -2(x)(\frac{1}{x}) + (\frac{1}{x})^2 = 5$.
$x^2 - 2 + \frac{1}{x^2} = 5$.
$x^2 + \frac{1}{x^2} = 5 + 2$
$x^2 + \frac{1}{x^2} = 7$
Therefore, the value of $x^2 + \frac{1}{x^2}$ is $7$.
Advertisements