If $x+\frac{1}{x}=4$, then find, $x^{2}+\frac{1}{x^2}=?$
Given: $x+\frac{1}{x}=4$.
To do: To find $x^{2}+\frac{1}{x^2}$
Solution:
Given, $x+\frac{1}{x}=4$
On squaring both sides,
( x+\frac{1}{x})^2=4^2
$\Rightarrow x^2+\frac{1}{x^2}+2
times x\times\frac{1}{x}=16$
$\Rightarrow x^2+\frac{1}{x^2}+2=16$
$\Rightarrow x^2+\frac{1}{x^2}=16-2$
$\Rightarrow x^2+\frac{1}{x^2}=14$
- Related Articles
- If \( x^{4}+\frac{1}{x^{4}}=194 \), find \( x^{3}+\frac{1}{x^{3}}, x^{2}+\frac{1}{x^{2}} \) and \( x+\frac{1}{x} \)
- If $x - \frac{1}{x} = 3$, find the values of $x^2 + \frac{1}{x^2}$ and $x^4 + \frac{1}{x^4}$.
- If \( x+\frac{1}{x}=3 \), calculate \( x^{2}+\frac{1}{x^{2}}, x^{3}+\frac{1}{x^{3}} \) and \( x^{4}+\frac{1}{x^{4}} \).
- If the points $(x+1,\ 2),\ (1,\ x+2)$ and $( \frac{1}{x+1},\ \frac{2}{x+1})$ are collinear, then find $x$.
- If \( x+\frac{1}{x}=11 \), find the value of(a) \( x^{2}+\frac{1}{x^{2}} \)(b) \( x^{4}+\frac{1}{x^{4}} \)
- If \( x-\frac{1}{x}=5 \), find the value of(a) \( x^{2}+\frac{1}{x^{2}} \)(b) \( x^{4}+\frac{1}{x^{4}} \)
- If \( x+\frac{1}{x}=\sqrt{5} \), find the values of \( x^{2}+ \frac{1}{x^{2}} \) and \( x^{4}+\frac{1}{x^{4}} \).
- Solve for x:$\frac{1}{x+1} +\frac{2}{x+2} =\frac{4}{x+4} ;\ x\neq -1,\ -2,\ -4$
- $\frac{x-1}{2}+\frac{2 x-1}{4}=\frac{x-1}{3}-\frac{2 x-1}{6}$.
- If \( x^{2}+\frac{1}{x^{2}}=62, \) find the value of\( x+\frac{1}{x} \)\( x-\frac{1}{x} \)
- $x+\frac{1}{x}=4$ find the value of the following:a) $x^{2}+\frac{1}{x^{2}}$b) $x^{4}+\frac{1}{x 4}$
- If \( x-\frac{1}{x}=-1 \), find the value of \( x^{2}+\frac{1}{x^{2}} \).
- $x^2+\frac{1}{x^2}=34$, then find the value of $x+\frac{1}{x}$.
- If $x^{2}+\frac{1}{x^{2}}=18$, find the values of $x+\frac{1}{x}$ and $x-\frac{1}{x}$.
- If $\frac{x+1}{y} = \frac{1}{2}, \frac{x}{y-2} = \frac{1}{2}$, find x and y.
Kickstart Your Career
Get certified by completing the course
Get Started