- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ x-\frac{1}{x}=5 $, find the value of
(a) $ x^{2}+\frac{1}{x^{2}} $
(b) $ x^{4}+\frac{1}{x^{4}} $
Given :
The given expression is $x-\frac{1}{x}=5$.
To do :
We have to find the values of
a) $x^{2}+\frac{1}{x^{2}}$
b) $x^{4}+\frac{1}{x 4}$.
Solution :
a) $x^{2}+\frac{1}{x^{2}}$
$x-\frac{1}{x}=5$
Squaring on both sides,
$(x-\frac{1}{x})^2=(5)^2$
$x^2 + \frac{1}{x^2} -2.x.\frac{1}{x} = 25$ $[(a-b)^2=a^2+b^2-2ab]$
$x^2 + \frac{1}{x^2} -2=25$
$x^2 + \frac{1}{x^2} =25+2$
$x^2 + \frac{1}{x^2} =27$.
Therefore, the value of $x^2 + \frac{1}{x^2}$ is 27.
b) $x^{4}+\frac{1}{x 4}$
We know that, $x^2 + \frac{1}{x^2} =27$
Squaring on both sides,
$(x^2 + \frac{1}{x^2})^2 =(27)^2$
$(x^2)^2 + (\frac{1}{x^2})^2 +2 .x^2.\frac{1}{x^2}=27^2$ $[(a+b)^2=a^2+b^2+2ab]$
$x^4 + \frac{1}{x^4} + 2 = 729$
$x^4 + \frac{1}{x^4}=729-2$
$x^4 + \frac{1}{x^4}=727$.
Therefore, the value of $x^4 + \frac{1}{x^4}$ is 727.