- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ x^{2}+\frac{1}{x^{2}}=62 $, find the value of
(a) $ x+\frac{1}{x} $
(b) $ x-\frac{1}{x} $
Given :
The given expression is \( x^{2}+\frac{1}{x^{2}}=62 \).
To do :
We have to find the values of
(a) \( x+\frac{1}{x} \)
(b) \( x-\frac{1}{x} \)
Solution :
a) $x^{2}+\frac{1}{x^{2}}=62$
Adding 2 on both sides, we get,
$x^2+\frac{1}{x^2}+2=62+2$
$(x)^2+(\frac{1}{x})^2+2.x.\frac{1}{x}=64$
$(x+\frac{1}{x})^2=8^2$ $[(a+b)^2=a^2+b^2+2ab]$
$\Rightarrow x+\frac{1}{x}=8$
b) $x^{2}+\frac{1}{x^{2}}=62$
Subtracting 2 from both sides, we get,
$x^2+\frac{1}{x^2}-2=62-2$
$(x)^2+(\frac{1}{x})^2-2.x.\frac{1}{x}=60$
$(x-\frac{1}{x})^2=(\sqrt{60})^2$ $[(a-b)^2=a^2+b^2-2ab]$
$\Rightarrow x-\frac{1}{x}=\sqrt{60}$
Advertisements