- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ x+\frac{1}{x}=11 $, find the value of
(a) $ x^{2}+\frac{1}{x^{2}} $
(b) $ x^{4}+\frac{1}{x^{4}} $
Given :
The given expression is $x+\frac{1}{x}=11$.
To do :
We have to find the values of
a) $x^{2}+\frac{1}{x^{2}}$
b) $x^{4}+\frac{1}{x 4}$.
Solution :  
a) $x^{2}+\frac{1}{x^{2}}$
$x+\frac{1}{x}=11$
Squaring on both sides,
$(x+\frac{1}{x})^2=(11)^2$
$x^2 + \frac{1}{x^2} +2.x.\frac{1}{x} = 121$ $[(a+b)^2=a^2+b^2+2ab]$
$x^2 + \frac{1}{x^2} +2=121$
$x^2 + \frac{1}{x^2} =121-2$
$x^2 + \frac{1}{x^2} =119$.
Therefore, the value of $x^2 + \frac{1}{x^2}$ is 119.
b) $x^{4}+\frac{1}{x 4}$
We know that, $x^2 + \frac{1}{x^2} =119$
Squaring on both sides,
$(x^2 + \frac{1}{x^2})^2 =(119)^2$
$(x^2)^2 + (\frac{1}{x^2})^2 +2 .x^2.\frac{1}{x^2}=14161$ $[(a+b)^2=a^2+b^2+2ab]$
$x^4 + \frac{1}{x^4} + 2 = 14161$
$x^4 + \frac{1}{x^4}=14161-2$
$x^4 + \frac{1}{x^4}=14159$.
Therefore, the value of $x^4 + \frac{1}{x^4}$ is 14159.