- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $x + \frac{1}{x} =20$, find the value of $x^2 + \frac{1}{x^2}$.
Given:
$x + \frac{1}{x} =20$
To do:
We have to find the value of $x^2 + \frac{1}{x^2}$.
Solution:
The given expression is $x + \frac{1}{x} =20$. Here, we have to find the value of $x^2 + \frac{1}{x^2}$. So, by squaring the given expression and using the identity $(a+b)^2=a^2+2ab+b^2$, we can find the value of $x^2 + \frac{1}{x^2}$.
$(a+b)^2=a^2+2ab+b^2$...................(i)
Now,
$x + \frac{1}{x} =20$
Squaring on both sides, we get,
$(x+\frac{1}{x})^2=(20)^2$
$x^2+2\times x \times \frac{1}{x}+(\frac{1}{x})^2=400$ [Using (i)]
$x^2+2+\frac{1}{x^2}=400$
$x^2+\frac{1}{x^2}=400-2$ (Transposing $2$ to RHS)
$x^2+\frac{1}{x^2}=398$
Hence, the value of $x^2+\frac{1}{x^2}$ is $398$.
- Related Articles
- If \( x-\frac{1}{x}=-1 \), find the value of \( x^{2}+\frac{1}{x^{2}} \).
- If \( x^{2}+\frac{1}{x^{2}}=62, \) find the value of\( x+\frac{1}{x} \)\( x-\frac{1}{x} \)
- Find the value of $x^2+\frac{1}{x^2}$ if $x+\frac{1}{x}=3$.
- If \( x+\frac{1}{x}=11 \), find the value of \( x^{2}+\frac{1}{x^{2}} \).
- If \( x^{2}+\frac{1}{x^{2}}=66 \), find the value of \( x-\frac{1}{x} \).
- If \( x^{2}+\frac{1}{x^{2}}=79 \), find the value of \( x+\frac{1}{x} \).
- If \( x^{2}+\frac{1}{x^{2}}=62 \), find the value of(a) \( x+\frac{1}{x} \)(b) \( x-\frac{1}{x} \)
- If $x - \frac{1}{x} = \sqrt{5}$, find the value of $x^2 + \frac{1}{x^2}$
- If \( x+\frac{1}{x}=11 \), find the value of(a) \( x^{2}+\frac{1}{x^{2}} \)(b) \( x^{4}+\frac{1}{x^{4}} \)
- If \( x-\frac{1}{x}=5 \), find the value of(a) \( x^{2}+\frac{1}{x^{2}} \)(b) \( x^{4}+\frac{1}{x^{4}} \)
- If \( x^{2}+\frac{1}{x^{2}}=51 \), find the value of \( x^{3}-\frac{1}{x^{3}} \).
- If \( x^{2}+\frac{1}{x^{2}}=98 \), find the value of \( x^{3}+\frac{1}{x^{3}} \).
- If $x^{2}+\frac{1}{x^{2}}=18$, find the values of $x+\frac{1}{x}$ and $x-\frac{1}{x}$.
- $x^2+\frac{1}{x^2}=34$, then find the value of $x+\frac{1}{x}$.
- If $\frac{2 x}{5}-\frac{3}{2}=\frac{x}{2}+1$, find the value of $x$.

Advertisements