
- Data Structures & Algorithms
- DSA - Home
- DSA - Overview
- DSA - Environment Setup
- Data Structures
- DSA - Data Structure Basics
- DSA - Data Structures and Types
- DSA - Array Data Structure
- Linked Lists
- DSA - Linked List Basics
- DSA - Doubly Linked List
- DSA - Circular Linked List
- Stack & Queue
- DSA - Stack
- DSA - Expression Parsing
- DSA - Queue
- Graph Data Structure
- DSA - Graph Data Structure
- DSA - Depth First Traversal
- DSA - Breadth First Traversal
- DSA - Spanning Tree
- Tree Data Structure
- DSA - Tree Data Structure
- DSA - Tree Traversal
- DSA - Binary Search Tree
- DSA - AVL Tree
- DSA - Red Black Trees
- DSA - B Trees
- DSA - B+ Trees
- DSA - Splay Trees
- DSA - Tries
- DSA - Heap
- Recursion
- DSA - Recursion Basics
- DSA - Tower of Hanoi
- DSA - Fibonacci Series
- DSA Useful Resources
- DSA - Questions and Answers
- DSA - Quick Guide
- DSA - Useful Resources
- DSA - Discussion
Data Structure - Linked List
Linked List Basics
A linked-list is a sequence of data structures which are connected together via links.
Linked List is a sequence of links which contains items. Each link contains a connection to another link. Linked list the second most used data structure after array. Following are important terms to understand the concepts of Linked List.
Link − Each Link of a linked list can store a data called an element.
Next − Each Link of a linked list contain a link to next link called Next.
LinkedList − A LinkedList contains the connection link to the first Link called First.
Linked List Representation

As per above shown illustration, following are the important points to be considered.
- LinkedList contains an link element called first.
- Each Link carries a data field(s) and a Link Field called next.
- Each Link is linked with its next link using its next link.
- Last Link carries a Link as null to mark the end of the list.
Types of Linked List
Following are the various flavours of linked list.
Simple Linked List − Item Navigation is forward only.
Doubly Linked List − Items can be navigated forward and backward way.
Circular Linked List − Last item contains link of the first element as next and and first element has link to last element as prev.
Basic Operations
Following are the basic operations supported by a list.
Insertion − add an element at the beginning of the list.
Deletion − delete an element at the beginning of the list.
Display − displaying complete list.
Search − search an element using given key.
Delete − delete an element using given key.
Insertion Operation
Insertion is a three step process −
- Create a new Link with provided data.
- Point New Link to old First Link.
- Point First Link to this New Link.

//insert link at the first location void insertFirst(int key, int data){ //create a link struct node *link = (struct node*) malloc(sizeof(struct node)); link->key = key; link->data = data; //point it to old first node link->next = head; //point first to new first node head = link; }
Deletion Operation
Deletion is a two step process −
- Get the Link pointed by First Link as Temp Link.
- Point First Link to Temp Link's Next Link.

//delete first item struct node* deleteFirst(){ //save reference to first link struct node *tempLink = head; //mark next to first link as first head = head->next; //return the deleted link return tempLink; }
Navigation Operation
Navigation is a recursive step process and is basis of many operations like search, delete etc. −
- Get the Link pointed by First Link as Current Link.
- Check if Current Link is not null and display it.
- Point Current Link to Next Link of Current Link and move to above step.

Note −
//display the list void printList(){ struct node *ptr = head; printf("\n[ "); //start from the beginning while(ptr != NULL){ printf("(%d,%d) ",ptr->key,ptr->data); ptr = ptr->next; } printf(" ]"); }
Advanced Operations
Following are the advanced operations specified for a list.
Sort − sorting a list based on a particular order.
Reverse − reversing a linked list.
Sort Operation
We've used bubble sort to sort a list.
void sort(){ int i, j, k, tempKey, tempData ; struct node *current; struct node *next; int size = length(); k = size ; for ( i = 0 ; i < size - 1 ; i++, k-- ) { current = head ; next = head->next ; for ( j = 1 ; j < k ; j++ ) { if ( current->data > next->data ) { tempData = current->data ; current->data = next->data; next->data = tempData ; tempKey = current->key; current->key = next->key; next->key = tempKey; } current = current->next; next = next->next; } } }
Reverse Operation
Following code demonstrate reversing a single linked list.
void reverse(struct node** head_ref) { struct node* prev = NULL; struct node* current = *head_ref; struct node* next; while (current != NULL) { next = current->next; current->next = prev; prev = current; current = next; } *head_ref = prev; }
To see linked-list implementation in C programming language, please click here.