
- Data Structures & Algorithms
- DSA - Home
- DSA - Overview
- DSA - Environment Setup
- Algorithm
- DSA - Algorithms Basics
- DSA - Asymptotic Analysis
- DSA - Greedy Algorithms
- DSA - Divide and Conquer
- DSA - Dynamic Programming
- Data Structures
- DSA - Data Structure Basics
- DSA - Data Structures and Types
- DSA - Array Data Structure
- Linked Lists
- DSA - Linked List Basics
- DSA - Doubly Linked List
- DSA - Circular Linked List
- Stack & Queue
- DSA - Stack
- DSA - Expression Parsing
- DSA - Queue
- Searching Techniques
- DSA - Linear Search
- DSA - Binary Search
- DSA - Interpolation Search
- DSA - Hash Table
- Sorting Techniques
- DSA - Sorting Algorithms
- DSA - Bubble Sort
- DSA - Insertion Sort
- DSA - Selection Sort
- DSA - Merge Sort
- DSA - Shell Sort
- DSA - Quick Sort
- Graph Data Structure
- DSA - Graph Data Structure
- DSA - Depth First Traversal
- DSA - Breadth First Traversal
- Tree Data Structure
- DSA - Tree Data Structure
- DSA - Tree Traversal
- DSA - Binary Search Tree
- DSA - AVL Tree
- DSA - Red Black Trees
- DSA - B Trees
- DSA - B+ Trees
- DSA - Splay Trees
- DSA - Spanning Tree
- DSA - Tries
- DSA - Heap
- Recursion
- DSA - Recursion Basics
- DSA - Tower of Hanoi
- DSA - Fibonacci Series
- DSA Useful Resources
- DSA - Questions and Answers
- DSA - Quick Guide
- DSA - Useful Resources
- DSA - Discussion
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Interpolation Search Program in C
Interpolation search is an improved variant of binary search. This search algorithm works on the probing position of the required value. For this algorithm to work properly, the data collection should be in sorted and equally distributed form.
It's runtime complexity is log2(log2 n).
Implementation in C
#include<stdio.h> #define MAX 10 // array of items on which linear search will be conducted. int list[MAX] = { 10, 14, 19, 26, 27, 31, 33, 35, 42, 44 }; int find(int data) { int lo = 0; int hi = MAX - 1; int mid = -1; int comparisons = 1; int index = -1; while(lo <= hi) { printf("\nComparison %d \n" , comparisons ) ; printf("lo : %d, list[%d] = %d\n", lo, lo, list[lo]); printf("hi : %d, list[%d] = %d\n", hi, hi, list[hi]); comparisons++; // probe the mid point mid = lo + (((double)(hi - lo) / (list[hi] - list[lo])) * (data - list[lo])); printf("mid = %d\n",mid); // data found if(list[mid] == data) { index = mid; break; } else { if(list[mid] < data) { // if data is larger, data is in upper half lo = mid + 1; } else { // if data is smaller, data is in lower half hi = mid - 1; } } } printf("\nTotal comparisons made: %d", --comparisons); return index; } int main() { //find location of 33 int location = find(33); // if element was found if(location != -1) printf("\nElement found at location: %d" ,(location+1)); else printf("Element not found."); return 0; }
If we compile and run the above program, it will produce the following result −
Output
Comparison 1 lo : 0, list[0] = 10 hi : 9, list[9] = 44 mid = 6 Total comparisons made: 1 Element found at location: 7
You can change the search value and execute the program to test it.
interpolation_search_algorithm.htm
Advertisements